ﻻ يوجد ملخص باللغة العربية
Multifidelity Monte Carlo methods rely on a hierarchy of possibly less accurate but statistically correlated simplified or reduced models, in order to accelerate the estimation of statistics of high-fidelity models without compromising the accuracy of the estimates. This approach has recently gained widespread attention in uncertainty quantification. This is partly due to the availability of optimal strategies for the estimation of the expectation of scalar quantities-of-interest. In practice, the optimal strategy for the expectation is also used for the estimation of variance and sensitivity indices. However, a general strategy is still lacking for vector-valued problems, nonlinearly statistically-dependent models, and estimators for which a closed-form expression of the error is unavailable. The focus of the present work is to generalize the standard multifidelity estimators to the above cases. The proposed generalized estimators lead to an optimization problem that can be solved analytically and whose coefficients can be estimated numerically with few runs of the high- and low-fidelity models. We analyze the performance of the proposed approach on a selected number of experiments, with a particular focus on cardiac electrophysiology, where a hierarchy of physics-based low-fidelity models is readily available.
We present a novel algorithmic approach and an error analysis leveraging Quasi-Monte Carlo points for training deep neural network (DNN) surrogates of Data-to-Observable (DtO) maps in engineering design. Our analysis reveals higher-order consistent,
A new (unadjusted) Langevin Monte Carlo (LMC) algorithm with improved rates in total variation and in Wasserstein distance is presented. All these are obtained in the context of sampling from a target distribution $pi$ that has a density $hat{pi}$ on
Many problems in machine learning and statistics involve nested expectations and thus do not permit conventional Monte Carlo (MC) estimation. For such problems, one must nest estimators, such that terms in an outer estimator themselves involve calcul
A statistical learning approach for parametric PDEs related to Uncertainty Quantification is derived. The method is based on the minimization of an empirical risk on a selected model class and it is shown to be applicable to a broad range of problems
Quasi-Monte Carlo (QMC) method is a useful numerical tool for pricing and hedging of complex financial derivatives. These problems are usually of high dimensionality and discontinuities. The two factors may significantly deteriorate the performance o