ﻻ يوجد ملخص باللغة العربية
The extension of the spin coherence times is a crucial issue for quantum information and quantum sensing. In solid state systems, suppressing noises with various techniques have been demonstrated. On the other hand, an electrical control for suppression is important toward individual controls of on-chip quantum information devices. Here we show the electrical control for extension of the spin coherence times of 40 nm-deep ion-implanted single nitrogen vacancy center spins in diamond by suppressing magnetic noises. We applied 120 V DC across two contacts spaced by 10 micrometers. The spin coherence times, estimated from a free-induction-decay and a Hahn-echo decay, were increased up to about 10 times (reaching 10 microseconds) and 1.4 times (reaching 150 microseconds), respectively. From the quantitative analysis, the dominant decoherence source depending on the applied static electric field was elucidated. The electrical control for extension can deliver a sensitivity enhancement to the DC sensing of temperature, pressure and electric (but not magnetic) fields, opening a new technique in solid-state quantum information devices.
A common impediment to qubit performance is imperfect state initialization. In the case of the diamond nitrogen-vacancy (NV) center, the initialization fidelity is limited by fluctuations in the defects charge state during optical pumping. Here, we u
We characterize single nitrogen-vacancy (NV) centers created by 10-keV N+ ion implantation into diamond via thin SiO$_2$ layers working as screening masks. Despite the relatively high acceleration energy compared with standard ones (< 5 keV) used to
The advancement of quantum optical science and technology with solid-state emitters such as nitrogen-vacancy (NV) centers in diamond critically relies on the coherence of the emitters optical transitions. A widely employed strategy to create NV cente
We present systematic measurements of longitudinal relaxation rates ($1/T_1$) of spin polarization in the ground state of the nitrogen-vacancy (NV$^-$) color center in synthetic diamond as a function of NV$^-$ concentration and magnetic field $B$. NV
Diamond quantum technologies based on color centers have rapidly emerged in the most recent years. The nitrogen-vacancy (NV) color center has attracted a particular interest, thanks to its outstanding spin properties and optical addressability. The N