ترغب بنشر مسار تعليمي؟ اضغط هنا

Real-Time Charge Initialization of Diamond Nitrogen-Vacancy Centers for Enhanced Spin Readout

195   0   0.0 ( 0 )
 نشر من قبل Lee Bassett
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A common impediment to qubit performance is imperfect state initialization. In the case of the diamond nitrogen-vacancy (NV) center, the initialization fidelity is limited by fluctuations in the defects charge state during optical pumping. Here, we use real-time control to deterministically initialize the NV centers charge state at room temperature. We demonstrate a maximum charge initialization fidelity of 99.4$pm$0.1% and present a quantitative model of the initialization process that allows for systems-level optimization of the spin-readout signal-to-noise ratio. Even accounting for the overhead associated with the initialization sequence, increasing the charge initialization fidelity from the steady-state value of 75% near to unity allows for a factor-of-two speedup in experiments while maintaining the same signal-to-noise-ratio. In combination with high-fidelity readout based on spin-to-charge conversion, real-time initialization enables a factor-of-20 speedup over traditional methods, resulting in an ac magnetic sensitivity of 1.3 nT/Hz$^{1/2}$ for our single NV-center spin. The real-time control method is immediately beneficial for quantum sensing applications with NV centers as well as probing charge-dependent physics, and it will facilitate protocols for quantum feedback control over multi-qubit systems.



قيم البحث

اقرأ أيضاً

Characterizing the local internal environment surrounding solid-state spin defects is crucial to harnessing them as nanoscale sensors of external fields. This is especially germane to the case of defect ensembles which can exhibit a complex interplay between interactions, internal fields and lattice strain. Working with the nitrogen-vacancy (NV) center in diamond, we demonstrate that local electric fields dominate the magnetic resonance behavior of NV ensembles at low magnetic field. We introduce a simple microscopic model that quantitatively captures the observed spectra for samples with NV concentrations spanning over two orders of magnitude. Motivated by this understanding, we propose and implement a novel method for the nanoscale localization of individual charges within the diamond lattice; our approach relies upon the fact that the charge induces an NV dark state which depends on the electric field orientation.
The diamond nitrogen-vacancy (NV) center is a leading platform for quantum information science due to its optical addressability and room-temperature spin coherence. However, measurements of the NV centers spin state typically require averaging over many cycles to overcome noise. Here, we review several approaches to improve the readout performance and highlight future avenues of research that could enable single-shot electron-spin readout at room temperature.
We utilize nonlinear absorption to design all-optical protocols that improve both charge state initialization and spin readout for the nitrogen-vacancy (NV) center in diamond. Non-monotonic variations in the equilibrium charge state as a function of visible and near-infrared (NIR) optical power are attributed to competing multiphoton absorption processes. In certain regimes, multicolor illumination enhances the steady-state population of the NVs negative charge state above 90%. At higher NIR intensities, selective ionization of the singlet manifold facilitates a protocol for spin-to-charge conversion that dramatically enhances the spin readout fidelity. We demonstrate a 6-fold increase in the signal-to-noise ratio for single-shot spin measurements and predict an orders-of-magnitude experimental speedup over traditional methods for emerging applications in magnetometry and quantum information science using NV spins.
The extension of the spin coherence times is a crucial issue for quantum information and quantum sensing. In solid state systems, suppressing noises with various techniques have been demonstrated. On the other hand, an electrical control for suppress ion is important toward individual controls of on-chip quantum information devices. Here we show the electrical control for extension of the spin coherence times of 40 nm-deep ion-implanted single nitrogen vacancy center spins in diamond by suppressing magnetic noises. We applied 120 V DC across two contacts spaced by 10 micrometers. The spin coherence times, estimated from a free-induction-decay and a Hahn-echo decay, were increased up to about 10 times (reaching 10 microseconds) and 1.4 times (reaching 150 microseconds), respectively. From the quantitative analysis, the dominant decoherence source depending on the applied static electric field was elucidated. The electrical control for extension can deliver a sensitivity enhancement to the DC sensing of temperature, pressure and electric (but not magnetic) fields, opening a new technique in solid-state quantum information devices.
218 - A. Jarmola , A. Berzins , J. Smits 2015
We present systematic measurements of longitudinal relaxation rates ($1/T_1$) of spin polarization in the ground state of the nitrogen-vacancy (NV$^-$) color center in synthetic diamond as a function of NV$^-$ concentration and magnetic field $B$. NV $^-$ centers were created by irradiating a Type 1b single-crystal diamond along the [100] axis with 200 keV electrons from a transmission electron microscope with varying doses to achieve spots of different NV$^-$ center concentrations. Values of ($1/T_1$) were measured for each spot as a function of $B$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا