ﻻ يوجد ملخص باللغة العربية
Topological states of matter were first introduced for non-interacting fermions on an infinite uniform lattice. Since then, substantial effort has been made to generalize these concepts to more complex settings. Recently, local markers have been developed that can describe the topological state of systems without translational symmetry and well-defined gap. However, no local marker for interacting matter has been proposed yet that is capable of directly addressing an interacting system. Here we suggest such a many-body local marker based on the single-particle Greens function. Using this marker we identify topological transitions in finite lattices of a Chern insulator with Anderson disorder and Hubbard interactions. Importantly, our proposal can be straightforwardly generalised to non-equilibrium systems.
Topological states of matter exhibit many novel properties due to the presence of robust topological invariants such as the Chern index. These global characteristics pertain to the system as a whole and are not locally defined. However, local topolog
We numerically investigate the surface states of a strong topological insulator in the presence of strong electron-electron interactions. We choose a spherical topological insulator geometry to make the surface amenable to a finite size analysis. The
We demonstrate that a combination of disorder and interactions in a two-dimensional bulk topological insulator can generically drive its helical edge insulating. We establish this within the framework of helical Luttinger liquid theory and exact Emer
The construction and classification of crystalline symmetry protected topological (SPT) phases in interacting bosonic and fermionic systems have been intensively studied in the past few years. Crystalline SPT phases are not only of conceptual importa
Motivated by the discovery of the quantum anomalous Hall effect in Cr-doped ce{(Bi,Sb)2Te3} thin films, we study the generic states for magnetic topological insulators and explore the physical properties for both magnetism and itinerant electrons. Fi