ترغب بنشر مسار تعليمي؟ اضغط هنا

The Well-Tempered Cosmological Constant: The Horndeski Variations

84   0   0.0 ( 0 )
 نشر من قبل Eric Linder
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Well tempering is one of the few classical field theory methods for solving the original cosmological constant problem, dynamically canceling a large (possibly Planck scale) vacuum energy and leaving the matter component intact, while providing a viable cosmology with late time cosmic acceleration and an end de Sitter state. We present the general constraints that variations of Horndeski gravity models with different combinations of terms must satisfy to admit an exact de Sitter spacetime that does not respond to an arbitrarily large cosmological constant. We explicitly derive several specific scalar-tensor models that well temper and can deliver a standard cosmic history including current cosmic acceleration. Stability criteria, attractor behavior of the de Sitter state, and the response of the models to pressureless matter are considered. The well tempered conditions can be used to focus on particular models of modified gravity that have special interest -- not only removing the original cosmological constant problem but providing relations between the free Horndeski functions and reducing them to a couple of parameters, suitable for testing gravity and cosmological data analysis.

قيم البحث

اقرأ أيضاً

Zero point fluctuations of quantum fields should generate a large cosmological constant energy density in any spacetime. How then can we have anything other than de Sitter space without fine tuning? Well tempering -- dynamical cancellation of the cos mological constant using degeneracy within the field equations -- can replace a large cosmological constant with a much lower energy state. Here we give an explicit mechanism to obtain a Minkowski solution, replacing the cosmological constant with zero, and testing its attractor nature and persistence through a vacuum phase transition. We derive the general conditions that Horndeski scalar-tensor gravity must possess, and evolve in a fugue of functions, to deliver nothing and make the universe be flat.
Self tuning is one of the few methods for dynamically cancelling a large cosmological constant and yet giving an accelerating universe. Its drawback is that it tends to screen all sources of energy density, including matter. We develop a model that t empers the self tuning so the dynamical scalar field still cancels an arbitrary cosmological constant, including the vacuum energy through any high energy phase transitions, without affecting the matter fields. The scalar-tensor gravitational action is simple, related to cubic Horndeski gravity, with a nonlinear derivative interaction plus a tadpole term. Applying shift symmetry and using the property of degeneracy of the field equations we find families of functions that admit de Sitter solutions with expansion rates that are independent of the magnitude of the cosmological constant and preserve radiation and matter dominated phases. That is, the method can deliver a standard cosmic history including current acceleration, despite the presence of a Planck scale cosmological constant.
It is well known that string theories naturally compactify on anti-de Sitter spaces, and yet cosmological observations show no evidence of a negative cosmological constant in the early Universes evolution. In this letter we present two simple nonloca l modifications of the standard Friedmann cosmology that can lead to observationally viable cosmologies with an initial (negative) cosmological constant. The nonlocal operators we include are toy models for the quantum cosmological backreaction. In Model I an initial quasiperiodic oscillatory epoch is followed by inflation and a late time matter era, representing a dark matter candidate. The backreaction in Model II quickly compensates the negative cosmological term such that the Ricci curvature scalar rapidly approaches zero, and the Universe ends up in a late time radiation era.
269 - C. D. Kreisch , E. Komatsu 2017
The discovery of the electromagnetic counterpart to GW170817 severely constrains the tensor mode propagation speed, eliminating a large model space of Horndeski theory. We use the cosmic microwave background data from Planck and the joint analysis of the BICEP2/Keck Array and Planck, galaxy clustering data from the SDSS LRG survey, BOSS baryon acoustic oscillation data, and redshift space distortion measurements to place constraints on the remaining Horndeski parameters. We evolve the Horndeski parameters as power laws with both the amplitude and power law index free. We find a 95% CL upper bound on the present-day coefficient of the Hubble friction term in the cosmological propagation of gravitational waves is 2.38, whereas General Relativity gives 2 at all times. While an enhanced friction suppresses the amplitude of the reionization bump of the primordial B-mode power spectrum at $ell < 10$, our result limits the suppression to be less than 0.8%. This constraint is primarily due to the scalar integrated Sachs-Wolfe effect in temperature fluctuations at low multipoles.
Various classes of exotic singularity models have been studied as possible mimic models for the observed recent acceleration of the universe. Here we further study one of these classes and, under the assumption that they are phenomenological toy mode ls for the behavior of an underlying scalar field which also couples to the electromagnetic sector of the theory, obtain the corresponding behavior of the fine-structure constant $alpha$ for particular choices of model parameters that have been previously shown to be in reasonable agreement with cosmological observations. We then compare this predicted behavior with available measurements of $alpha$, thus constraining this putative coupling to electromagnetism. We find that values of the coupling which would provide a good fit to spectroscopic measurements of $alpha$ are in more than three-sigma tension with local atomic clock bounds. Future measurements by ESPRESSO and ELT-HIRES will provide a definitive test of these models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا