ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological Constraints on Horndeski Gravity in Light of GW170817

270   0   0.0 ( 0 )
 نشر من قبل Christina Kreisch
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of the electromagnetic counterpart to GW170817 severely constrains the tensor mode propagation speed, eliminating a large model space of Horndeski theory. We use the cosmic microwave background data from Planck and the joint analysis of the BICEP2/Keck Array and Planck, galaxy clustering data from the SDSS LRG survey, BOSS baryon acoustic oscillation data, and redshift space distortion measurements to place constraints on the remaining Horndeski parameters. We evolve the Horndeski parameters as power laws with both the amplitude and power law index free. We find a 95% CL upper bound on the present-day coefficient of the Hubble friction term in the cosmological propagation of gravitational waves is 2.38, whereas General Relativity gives 2 at all times. While an enhanced friction suppresses the amplitude of the reionization bump of the primordial B-mode power spectrum at $ell < 10$, our result limits the suppression to be less than 0.8%. This constraint is primarily due to the scalar integrated Sachs-Wolfe effect in temperature fluctuations at low multipoles.

قيم البحث

اقرأ أيضاً

199 - Tessa Baker 2017
The detection of an electromagnetic counterpart (GRB 170817A) to the gravitational wave signal (GW170817) from the merger of two neutron stars opens a completely new arena for testing theories of gravity. We show that this measurement allows us to pl ace stringent constraints on general scalar-tensor and vector-tensor theories, while allowing us to place an independent bound on the graviton mass in bimetric theories of gravity. These constraints severely reduce the viable range of cosmological models that have been proposed as alternatives to general relativistic cosmology.
The Horndeski gauge-gravity coupling is the leading non-minimal interaction between gravity and gauge bosons, and it preserves all the symmetries and the number of physical degrees of freedom of the standard model of particle physics and general rela tivity. In this paper we study the effects of the non-minimal interaction in astronomy and cosmology, and obtain upper bounds on the associated dimensionless coupling constant $lambda$. From the modification of equations of motion of gauge bosons applied to compact astronomical objects, we find upper bounds $|lambda| lesssim 10^{88}$, $|lambda| lesssim 10^{75}$ and $|lambda| lesssim 10^{84}$ from a black hole shadow, neutron stars and white dwarfs, respectively. The bound $|lambda| lesssim 10^{75}$ that is deduced from neutron stars is the strongest and provides twenty orders of magnitude improvement of the previously known best bound on this parameter. On the other hand, the effects of this term on modification of the gravitational Poisson equation lead to a weaker bound $|lambda| lesssim 10^{98}$. From the propagation of gravitational waves we also find $|lambda| lesssim 10^{119}$, which is even weaker.
Most of the information on our cosmos stems from either late-time observations or the imprint of early-time inhomogeneities on the cosmic microwave background. We explore to what extent early modifications of gravity, which become significant after r ecombination but then decay towards the present, can be constrained by current cosmological observations. For the evolution of the gravitational modification, we adopt the decaying mode of a hybrid-metric Palatini $f(mathcal{R})$ gravity model which is designed to reproduce the standard cosmological background expansion history and due to the decay of the modification is naturally compatible with Solar-System tests. We embed the model in the effective field theory description of Horndeski scalar-tensor gravity with an early-time decoupling of the gravitational modification. Since the quasistatic approximation for the perturbations in the model breaks down at high redshifts, where modifications remain relevant, we introduce a computationally efficient correction to describe the evolution of the scalar field fluctuation in this regime. We compare the decaying early-time modification against geometric probes and recent Planck measurements and find no evidence for such effects in the observations. Current data constrains the scalar field value at $|f_{mathcal{R}}(z=z_{rm on})| lesssim 10^{-2}$ for modifications introduced at redshifts $z_{rm on}sim(500-1000)$ with present-day value $|f_{mathcal{R}0}|lesssim10^{-8}$. Finally, we comment on constraints that will be achievable with future 21~cm surveys and gravitational wave experiments.
134 - Johannes Noller 2020
Gravitational wave (GW) constraints have recently been used to significantly restrict models of dark energy and modified gravity. New bounds arising from GW decay and GW-induced dark energy instabilities are particularly powerful in this context, com plementing bounds from the observed speed of GWs. We discuss the associated linear cosmology for Horndeski gravity models surviving these combined bounds and compute the corresponding cosmological parameter constraints, using CMB, redshift space distortion, matter power spectrum and BAO measurements from the Planck, SDSS/BOSS and 6dF surveys. The surviving theories are strongly constrained, tightening previous bounds on cosmological deviations from $Lambda{}$CDM by over an order of magnitude. We also comment on general cosmological stability constraints and the nature of screening for the surviving theories, pointing out that a raised strong coupling scale can ensure compatibility with gravitational wave constraints, while maintaining a functional Vainshtein screening mechanism on solar system scales. Finally, we discuss the quasi-static limit as well as (constraints on) related observables for near-future surveys.
108 - Didam Duniya 2019
The beyond-Horndeski gravity has recently been reformulated in the dark energy paradigm - which has been dubbed, Unified Dark Energy (UDE). The evolution equations for the given UDE appear to correspond to a non-conservative dark energy scenario, in which the total energy-momentum tensor is not conserved. We investigate both the background cosmology and, the large-scale imprint of the UDE by probing the angular power spectrum of galaxy number counts, on ultra-large scales; taking care to include the full relativistic corrections in the observed overdensity. The background evolution shows that only an effective mass smaller than the Planck mass is needed in the early universe in order for predictions in the given theory to match current observational constraints. We found that the effective mass-evolution-rate parameter, which drives the evolution of the UDE, acts to enhance the observed power spectrum and, hence, relativistic effects (on ultra-large scales) by enlarging the UDE sound horizon. Conversely, both the (beyond) Horndeski parameter and the kineticity act to diminish the observed power spectrum, by decreasing the UDE sound horizon. Our results show that, in a universe with UDE, a multi-tracer analysis will be needed to detect the relativistic effects in the large-scale structure. In the light of a multi-tracer analysis, the various relativistic effects hold the potential to distinguish different gravity models. Moreover, while the Doppler effect will remain significant at all epochs and, thus can not be ignored, the integrated Sachs-Wolfe, the time-delay and the potential (difference) effects, respectively, will only become significant at epochs near z=3 and beyond, and may be neglected at late epochs. In the same vein, the Doppler effect alone can serve as an effective cosmological probe for the large-scale structure or gravity models, in the angular power spectrum - at all z.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا