ترغب بنشر مسار تعليمي؟ اضغط هنا

The Well-Tempered Cosmological Constant

83   0   0.0 ( 0 )
 نشر من قبل Eric Linder
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Self tuning is one of the few methods for dynamically cancelling a large cosmological constant and yet giving an accelerating universe. Its drawback is that it tends to screen all sources of energy density, including matter. We develop a model that tempers the self tuning so the dynamical scalar field still cancels an arbitrary cosmological constant, including the vacuum energy through any high energy phase transitions, without affecting the matter fields. The scalar-tensor gravitational action is simple, related to cubic Horndeski gravity, with a nonlinear derivative interaction plus a tadpole term. Applying shift symmetry and using the property of degeneracy of the field equations we find families of functions that admit de Sitter solutions with expansion rates that are independent of the magnitude of the cosmological constant and preserve radiation and matter dominated phases. That is, the method can deliver a standard cosmic history including current acceleration, despite the presence of a Planck scale cosmological constant.

قيم البحث

اقرأ أيضاً

Well tempering is one of the few classical field theory methods for solving the original cosmological constant problem, dynamically canceling a large (possibly Planck scale) vacuum energy and leaving the matter component intact, while providing a via ble cosmology with late time cosmic acceleration and an end de Sitter state. We present the general constraints that variations of Horndeski gravity models with different combinations of terms must satisfy to admit an exact de Sitter spacetime that does not respond to an arbitrarily large cosmological constant. We explicitly derive several specific scalar-tensor models that well temper and can deliver a standard cosmic history including current cosmic acceleration. Stability criteria, attractor behavior of the de Sitter state, and the response of the models to pressureless matter are considered. The well tempered conditions can be used to focus on particular models of modified gravity that have special interest -- not only removing the original cosmological constant problem but providing relations between the free Horndeski functions and reducing them to a couple of parameters, suitable for testing gravity and cosmological data analysis.
When faced with two nigh intractable problems in cosmology -- how to remove the original cosmological constant problem and how to parametrize modified gravity to explain current cosmic acceleration -- we can make progress by counterposing them. The w ell tempered solution to the cosmological constant through degenerate scalar field dynamics also relates disparate Horndeski gravity terms, making them contrapuntal. We derive the connection between the kinetic term $K$ and braiding term $G_3$ for shift symmetric theories (including the running Planck mass $G_4$), extending previous work on monomial or binomial dependence to polynomials of arbitrary finite degree. We also exhibit an example for an infinite series expansion. This contrapuntal condition greatly reduces the number of parameters needed to test modified gravity against cosmological observations, for these golden theories of gravity.
Theoretically, the running of the cosmological constant in the IR region is not ruled out. On the other hand, from the QFT viewpoint, the energy released due to the variation of the cosmological constant in the late universe cannot go to the matter s ector. For this reason, the phenomenological bounds on such a running are not sufficiently restrictive. The situation can be different in the early universe when the gravitational field was sufficiently strong to provide an efficient creation of particles from the vacuum. We develop a framework for systematically exploring this ossibility. It is supposed that the running occurs in the epoch when the Dark Matter already decoupled and is expanding adiabatically, while baryons are approximately massless and can be abundantly created from vacuum due to the decay of vacuum energy. By using the handy model of Reduced Relativistic Gas for describing the Dark Matter, we consider the dynamics of both cosmic background and linear perturbations and evaluate the impact of the vacuum decay on the matter power spectrum and to the first CMB peak. Additionally, using the combined data of CMB+BAO+SNIa we find the best fit values for the free parameters of our model.
66 - Enrique Gaztanaga 2021
The cosmological constant $Lambda$ is usually interpreted as Dark Energy (DE) or modified gravity (MG). Here we propose instead that $Lambda$ corresponds to a boundary term in the action of classical General Relativity. The action is zero for a perfe ct fluid solution and this fixes $Lambda$ to the average density $rho$ and pressure $p$ inside a primordial causal boundary: $Lambda = 4pi G <rho+3p>$. This explains both why the observed value of $Lambda$ is related to the matter density today and also why other contributions to $Lambda$, such as DE or MG, do not produce cosmic expansion. Cosmic acceleration results from the repulsive boundary force that occurs when the expansion reaches the causal horizon. This universe is similar to the $Lambda$CDM universe, except on the largest observable scales, where we expect departures from homogeneity/isotropy, such as CMB anomalies and variations in cosmological parameters indicated by recent observations.
We study dynamics of non-minimally coupled scalar field cosmological models with Higgs-like potentials and a negative cosmological constant. In these models the inflationary stage of the Universe evolution changes into a quasi-cyclic stage of the Uni verse evolution with oscillation behaviour of the Hubble parameter from positive to negative values. Depending on the initial conditions the Hubble parameter can perform either one or several cycles before to become negative forever.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا