ﻻ يوجد ملخص باللغة العربية
In this work, we present the program MAELAS to calculate magnetocrystalline anisotropy energy, anisotropic magnetostrictive coefficients and magnetoelastic constants in an automated way by Density Functional Theory calculations. The program is based on the length optimization of the unit cell proposed by Wu and Freeman to calculate the magnetostrictive coefficients for cubic crystals. In addition to cubic crystals, this method is also implemented and generalized for other types of crystals that may be of interest in the study of magnetostrictive materials. As a benchmark, some tests are shown for well-known magnetic materials.
MAELAS is a computer program for the calculation of magnetocrystalline anisotropy energy, anisotropic magnetostrictive coefficients and magnetoelastic constants in an automated way. The method originally implemented in version 1.0 of MAELAS was based
We search for novel two-dimensional materials that can be easily exfoliated from their parent compounds. Starting from 108423 unique, experimentally known three-dimensional compounds we identify a subset of 5619 that appear layered according to robus
While the ongoing search to discover new high-entropy systems is slowly expanding beyond metals, a rational and effective method for predicting in silico the solid solution forming ability of multi-component systems remains yet to be developed. In th
The structural properties of Thallium (III) oxide (Tl2O3) have been studied both experimentally and theoretically under compression at room temperature. X-ray powder diffraction measurements up to 37.7 GPa have been complemented with ab initio total-
The recent observation of ferromagnetic order in two-dimensional (2D) materials has initiated a booming interest in the subject of 2D magnetism. In contrast to bulk materials, 2D materials can only exhibit magnetic order in the presence of magnetic a