ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds

80   0   0.0 ( 0 )
 نشر من قبل Marco Gibertini
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We search for novel two-dimensional materials that can be easily exfoliated from their parent compounds. Starting from 108423 unique, experimentally known three-dimensional compounds we identify a subset of 5619 that appear layered according to robust geometric and bonding criteria. High-throughput calculations using van-der-Waals density-functional theory, validated against experimental structural data and calculated random-phase-approximation binding energies, allow to identify 1825 compounds that are either easily or potentially exfoliable, including all that are commonly exfoliated experimentally. In particular, the subset of 1036 easily exfoliable cases---layered materials held together mostly by dispersion interactions and with binding energies up to $30-35$ meV$cdottext{AA}^{-2}$---provides a wealth of novel structural prototypes and simple ternary compounds, and a large portfolio to search materials for optimal properties. For the 258 compounds with up to 6 atoms per primitive cell we comprehensively explore vibrational, electronic, magnetic, and topological properties, identifying in particular 56 ferromagnetic and antiferromagnetic systems, including half-metals and half-semiconductors.

قيم البحث

اقرأ أيضاً

By performing high-throughput calculations using density functional theory combined with a semiempirical van der Waals dispersion correction, we screen 97 direct- and 253 indirect-gap two dimensional nonmagnetic semiconductors from near 1000 monolaye rs according to the energetic, thermodynamic, mechanical and dynamic stability criterions. We present the calculated results including lattice constants, formation energy, Youngs modulus, Poissons ratio, shear modulus, band gap, band structure, ionization energy and electron affinity for all the candidates satisfying our criteria.
The electronic band structure of crystals is generally influenced by the periodic arrangement of their constituent atoms. Specifically, the emerging two-dimensional (2D) layered structures have shown different band structures with respect to their st acking configurations. Here, based on first-principles density-functional theory calculations, we demonstrate that the band structure of the recently synthesized 2D Ca$_2$N electride changes little for the stacking sequence as well as the lateral interlayer shift. This intriguing invariance of band structure with respect to geometrical variations can be attributed to a complete screening of [Ca$_2$N]$^{+}$ cationic layers by anionic excess electrons delocalized between the cationic layers. The resulting weak interactions between 2D dressed cationic layers give rise to not only a shallow potential barrier for bilayer sliding but also an electron-doping facilitated shear exfoliation. Our findings open a route for exploration of the peculiar geometry-insensitive electronic properties in 2D electride materials, which will be useful for future thermally stable electronic applications.
The discoveries of intrinsically magnetic topological materials, including semimetals with a large anomalous Hall effect and axion insulators, have directed fundamental research in solid-state materials. Topological quantum chemistry has enabled the understanding of and the search for paramagnetic topological materials. Using magnetic topological indices obtained from magnetic topological quantum chemistry (MTQC), here we perform a high-throughput search for magnetic topological materials based on first-principles calculations. We use as our starting point the Magnetic Materials Database on the Bilbao Crystallographic Server, which contains more than 549 magnetic compounds with magnetic structures deduced from neutron-scattering experiments, and identify 130 enforced semimetals (for which the band crossings are implied by symmetry eigenvalues), and topological insulators. For each compound, we perform complete electronic structure calculations, which include complete topological phase diagrams using different values of the Hubbard potential. Using a custom code to find the magnetic co-representations of all bands in all magnetic space groups, we generate data to be fed into the algorithm of MTQC to determine the topology of each magnetic material. Several of these materials display previously unknown topological phases, including symmetry-indicated magnetic semimetals, three-dimensional anomalous Hall insulators and higher-order magnetic semimetals. We analyse topological trends in the materials under varying interactions: 60 per cent of the 130 topological materials have topologies sensitive to interactions, and the others have stable topologies under varying interactions. We provide a materials database for future experimental studies and open-source code for diagnosing topologies of magnetic materials.
The metal diborides are a class of ceramic materials with crystal structures consisting of hexagonal sheets of boron atoms alternating with planes of metal atoms held together with mixed character ionic/covalent bonds. Many of the metal diborides are ultrahigh temperature ceramics like HfB$_2$, TaB$_2$, and ZrB$_2$, which have melting points above 3000$^circ$C, high mechanical hardness and strength at high temperatures, and high chemical resistance, while MgB$_2$ is a superconductor with a transition temperature of 39 K. Here we demonstrate that this diverse family of non-van der Waals materials can be processed into stable dispersions of two-dimensional (2D) nanosheets using ultrasonication-assisted exfoliation. We generate 2D nanosheets of the metal diborides AlB$_2$, CrB$_2$, HfB$_2$, MgB$_2$, NbB$_2$, TaB$_2$, TiB$_2$, and ZrB$_2$, and use electron and scanning probe microscopies to characterize their structures, morphologies, and compositions. The exfoliated layers span up to micrometers in lateral dimension and reach thicknesses down to 2-3 nm, while retaining their hexagonal atomic structure and chemical composition. We exploit the convenient solution-phase dispersions of exfoliated CrB$_2$ nanosheets to incorporate them directly into polymer composites. In contrast to the hard and brittle bulk CrB$_2$, we find that CrB$_2$ nanocomposites remain very flexible and simultaneously provide increases in the elastic modulus and the ultimate tensile strength of the polymer. The successful liquid-phase production of 2D metal diborides enables their processing using scalable low-temperature solution-phase methods, extending their use to previously unexplored applications, and reveals a new family of non-van der Waals materials that can be efficiently exfoliated into 2D forms.
The recent observation of ferromagnetic order in two-dimensional (2D) materials has initiated a booming interest in the subject of 2D magnetism. In contrast to bulk materials, 2D materials can only exhibit magnetic order in the presence of magnetic a nisotropy. In the present work we have used the Computational 2D Materials Database (C2DB) to search for new ferromagnetic 2D materials using the spinwave gap as a simple descriptor that accounts for the role of magnetic anisotropy. In addition to known compounds we find 12 novel insulating materials that exhibit magnetic order at finite temperatures. For these we evaluate the critical temperatures from classical Monte Carlo simulations of a Heisenberg model with exchange and anisotropy parameters obtained from first principles. Starting from 150 stable ferromagnetic 2D materials we find five candidates that are predicted to have critical temperatures exceeding that of CrI3. We also study the effect of Hubbard corrections in the framework of DFT+U and find that the value of U can have a crucial influence on the prediction of magnetic properties. Our work provides new insight into 2D magnetism and identifies a new set of promising monolayers for experimental investigation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا