ﻻ يوجد ملخص باللغة العربية
MAELAS is a computer program for the calculation of magnetocrystalline anisotropy energy, anisotropic magnetostrictive coefficients and magnetoelastic constants in an automated way. The method originally implemented in version 1.0 of MAELAS was based on the length optimization of the unit cell, proposed by Wu and Freeman, to calculate the anisotropic magnetostrictive coefficients. We present here a revised and updated version (v2.0) of MAELAS, where we added a new methodology to compute anisotropic magnetoelastic constants from a linear fitting of the energy versus applied strain. We analyze and compare the accuracy of both methods showing that the new approach is more reliable and robust than the one implemented in version 1.0, especially for non-cubic crystal symmetries. This analysis also help us to find that the accuracy of the method implemented in version 1.0 could be improved by using deformation gradients derived from the equilibrium magnetoelastic strain tensor, as well as potential future alternative methods like the strain optimization method. Additionally, we clarify the role of the demagnetized state in the fractional change in length, and derive the expression for saturation magnetostriction for polycrystals with trigonal, tetragonal and orthorhombic crystal symmetry. In this new version, we also fix some issues related to trigonal crystal symmetry found in version 1.0.
In this work, we present the program MAELAS to calculate magnetocrystalline anisotropy energy, anisotropic magnetostrictive coefficients and magnetoelastic constants in an automated way by Density Functional Theory calculations. The program is based
The structural, elastic, magnetic properties, as well as electronic structure and chemical bonding picture of new oxide 3d1-perovskite BaVO3, recently synthesized, were systematically investigated involving the first-principles FLAPW-GGA calculations
We have analysed structural motifs in the Deem database of hypothetical zeolites, to investigate whether the structural diversity found in this database can be well-represented by classical descriptors such as distances, angles, and ring sizes, or wh
In this paper we calculated the elastic constants of $gamma Ce$. The calculations were performed self-consistently using the full potential augmented plane wave plus local orbital (FP-APW+lo) method. We used the generalized gradient approximation (GG
Using high resolution neutron diffraction and capacitance dilatometry we show that the thermal evolution of the helimagnetic state in CoMnSi is accompanied by a change in inter-atomic distances of up to 2%, the largest ever found in a metallic magnet