ﻻ يوجد ملخص باللغة العربية
Based on the Dyson-Schwinger equation, we compute the resummed gluon propagator in a holonomous plasma that is described by introducing a constant background field for the vector potential $A_{0}$. Due to the transversality of the holonomous Hard-Thermal-Loop in gluon self-energy, the resummed propagator has a similar Lorentz structure as that in the perturbative Quark-Gluon Plasma where the holonomy vanishes. As for the color structures, since diagonal gluons are mixed in the over-complete double line basis, only the propagators for off-diagonal gluons can be obtained unambiguously. On the other hand, multiplied by a projection operator, the propagators for diagonal gluons, which exhibit a highly non-trivial dependence on the background field, are uniquely determined after summing over the color indices. As an application of these results, we consider the Debye screening effect on the in-medium binding of quarkonium states by analyzing the static limit of the resummed gluon propagator. In general, introducing non-zero holonomy merely amounts to modifications on the perturbative screening mass $m_D$ and the resulting heavy-quark potential, which remains the standard Debye screened form, is always deeper than the screened potential in the perturbative Quark-Gluon Plasma. Therefore, a weaker screening, thus a more tightly bounded quarkonium state can be expected in a holonomous plasma. In addition, both the diagonal and off-diagonal gluons become distinguishable by their modified screening masses ${cal M}_D$ and the temperature dependence of the ratio ${cal M}_D/T$ shows a very similar behavior as that found in lattice simulations.
Due to the rapid longitudinal expansion of the quark-gluon plasma created in heavy-ion collisions, large local-rest-frame momentum-space anisotropies are generated during the systems evolution. These momentum-space anisotropies complicate the modelin
At a nonzero temperature T, a constant field $overline{A}_0 sim T/g$ generates nontrivial eigenvalues of the thermal Wilson line. We discuss contributions to the free energy of such a holonomous plasma when the coupling constant, $g$, is weak. We rev
We compute the gluon polarization tensor in a thermo-magnetic environment in the strong magnetic field limit at zero and high temperature. The magnetic field effects are introduced using Schwingers proper time method. Thermal effects are computed in
Quark-gluon plasma produced at the early stage of ultrarelativistic heavy ion collisions is unstable, if weakly coupled, due to the anisotropy of its momentum distribution. Chromomagnetic fields are spontaneously generated and can reach magnitudes mu
In the deconfined regime of a non-Abelian gauge theory at nonzero temperature, previously it was argued that if a (gauge invariant) source is added to generate nonzero holonomy, that this source must be linear for small holonomy. The simplest example