ترغب بنشر مسار تعليمي؟ اضغط هنا

Momentum broadening in unstable quark-gluon plasma

148   0   0.0 ( 0 )
 نشر من قبل M. E. Carrington
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Quark-gluon plasma produced at the early stage of ultrarelativistic heavy ion collisions is unstable, if weakly coupled, due to the anisotropy of its momentum distribution. Chromomagnetic fields are spontaneously generated and can reach magnitudes much exceeding typical values of the fields in equilibrated plasma. We consider a high energy test parton traversing an unstable plasma that is populated with strong fields. We study the momentum broadening parameter $hat q$ which determines the radiative energy loss of the test parton. We develop a formalism which gives $hat q$ as the solution of an initial value problem, and we focus on extremely oblate plasmas which are physically relevant for relativistic heavy ion collisions. The parameter $hat q$ is found to be strongly dependent on time. For short times it is of the order of the equilibrium value, but at later times $hat q$ grows exponentially due to the interaction of the test parton with unstable modes and becomes much bigger than the value in equilibrium. The momentum broadening is also strongly directionally dependent and is largest when the test parton velocity is transverse to the beam axis. Consequences of our findings for the phenomenology of jet quenching in relativistic heavy ion collisions are briefly discussed.



قيم البحث

اقرأ أيضاً

Monopole-like objects have been identified in multiple lattice studies, and there is now a significant amount of literature on their importance in phenomenology. Some analytic indications of their role, however, are still missing. The t Hooft-Polyako v monopoles, originally derived in the Georgi-Glashow model, are an important dynamical ingredient in theories with extended supersymmetry ${cal N} = 2,,4$, and help explain the issues related with electric-magnetic duality. There is no such solution in QCD-like theories without scalar fields. However, all of these theories have instantons and their finite-$T$ constituents known as instanton-dyons (or instanton-monopoles). The latter leads to semiclassical partition functions, which for ${cal N} = 2,,4$ theories were shown to be identical (Poisson dual) to the partition function for monopoles. We show how, in a pure gauge theory, the semiclassical instanton-based partition function can also be Poisson-transformed into a partition function, interpreted as the one of moving and rotating monopoles.
We utilize the technology of open quantum systems in conjunction with the recently developed effective field theory for forward scattering to address the question of massless jet propagation through a weakly-coupled quark-gluon plasma in thermal equi librium. We discuss various possible hierarchies of scales that may appear in this problem, by comparing thermal scales of the plasma with relevant scales in the effective field theory. Starting from the Lindblad equation, we derive and solve a master equation for the transverse momentum distribution of a massless quark jet, at leading orders both in the strong coupling and in the power counting of the effective field theory. Markovian approximation is justified in the weak coupling limit. Using the solution to the master equation, we study the transverse momentum broadening of a jet as a function of the plasma temperature and the time of propagation. We discuss the physical origin of infrared sensitivity that arises in the solution and a way to handle it in the effective field theory formulation. We suspect that the final measurement constraint can only cut-off leading infrared singularities and the solution to the Markovian master equation resums a logarithmic series. This work is a stepping stone towards understanding jet quenching and jet substructure observables on both light and heavy quark jets as probes of the quark-gluon plasma.
121 - Edward Shuryak 2008
This review cover our current understanding of strongly coupled Quark-Gluon Plasma (sQGP), especially theoretical progress in (i) explaining the RHIC data by hydrodynamics, (ii) describing lattice data using electric-magnetic duality; (iii) understan ding of gauge-string duality known as AdS/CFT and its application for conformal plasma. In view of interdisciplinary nature of the subject, we include brief introduction into several topics for pedestrians. Some fundamental questions addressed are: Why is sQGP such a good liquid? What is the nature of (de)confinement and what do we know about magnetic objects creating it? Do they play any important role in sQGP physics? Can we understand the AdS/CFT predictions, from the gauge theory side? Can they be tested experimentally? Can AdS/CFT duality help us understand rapid equilibration/entropy production? Can we work out a complete dynamical gravity dual to heavy ion collisions?
In the deconfined regime of a non-Abelian gauge theory at nonzero temperature, previously it was argued that if a (gauge invariant) source is added to generate nonzero holonomy, that this source must be linear for small holonomy. The simplest example of this is the second Bernoulli polynomial. However, then there is a conundrum in computing the free energy to $sim g^3$ in the coupling constant $g$, as part of the free energy is discontinuous as the holonomy vanishes. In this paper we investigate two ways of generating the second Bernoulli polynomial dynamically: as a mass derivative of an auxiliary field, and from two dimensional ghosts embedded isotropically in four dimensions. Computing the holonomous hard thermal loop (HHTL) in the gluon self-energy, we find that the limit of small holonomy is only well behaved for two dimensional ghosts, with a free energy which to $sim g^3$ is continuous as the holonomy vanishes.
In the early stages of heavy-ion collisions, the hot QCD matter expands more longitudinally than transversely. This imbalance causes the system to become rapidly colder in the longitudinal direction and a local momentum anisotropy appears. In this pa per, we study the heavy-quarkonium spectrum in the presence of a small plasma anisotropy. We work in the framework of pNRQCD at finite temperature. We inspect arrangements of non-relativistic and thermal scales complementary to those considered in the literature. In particular, we consider temperatures larger and Debye masses smaller than the binding energy, which is a temperature range relevant for presently running LHC experiments. In this setting we compute the leading thermal corrections to the binding energy and the thermal width induced by quarkonium gluo-dissociation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا