ﻻ يوجد ملخص باللغة العربية
At a nonzero temperature T, a constant field $overline{A}_0 sim T/g$ generates nontrivial eigenvalues of the thermal Wilson line. We discuss contributions to the free energy of such a holonomous plasma when the coupling constant, $g$, is weak. We review the computation to $sim g^2$ by several alternate methods, and show that gauge invariant sources, which are nonlinear in the gauge potential $A_0$, generate novel contributions to the gluon self energy at $sim g^2$. These ensure the gluon self energy remains transverse to $sim g^2$, and are essential in computing contributions to the free energy at $sim g^3$ for small holonomy, $overline{A}_0 sim T$. We show that the contribution $sim g^3$ from off-diagonal gluons is discontinuous as the holonomy vanishes. The contribution from diagonal gluons is continuous as the holonomy vanishes, but sharply constrains the possible sources which generate nonzero holonomy, and must involve an infinite number of Polyakov loops.
Based on the Dyson-Schwinger equation, we compute the resummed gluon propagator in a holonomous plasma that is described by introducing a constant background field for the vector potential $A_{0}$. Due to the transversality of the holonomous Hard-The
We develop a method to obtain fermion spectral functions non-perturbatively in a non-Abelian gauge theory with high occupation numbers of gauge fields. After recovering the free field case, we extract the spectral function of fermions in a highly occ
We extract the heavy-quark diffusion coefficient kappa and the resulting momentum broadening <p^2> in a far-from-equilibrium non-Abelian plasma. We find several features in the time dependence of the momentum broadening: a short initial rapid growth
We perform real-time lattice simulations of nonequilibrium quark production in the longitudinally expanding QCD plasma. Starting from a highly occupied gluonic state with vacuum quark sector, we extract the time evolution of quark and gluon number de
The thesis contains studies of properties quark-gluon plasma, using some non-perturbative techniques. It contains a brief introduction of quark-gluon plasma (QGP) and discussion on various signatures along with a motivation for this thesis work. It p