ﻻ يوجد ملخص باللغة العربية
Modular invariance imposes rigid constrains on the partition functions of two-dimensional conformal field theories. Many fundamental results follow strictly from modular invariance, giving rise to the numerical modular bootstrap program. Here we report a way to assign to a particular family of quantum error correcting codes a family of code CFTs CFTs, which forms a subset of the space of Narain CFTs. This correspondence reduces modular invariance of the 2d CFT partition function to a few simple algebraic relations obeyed by a multivariate polynomial characterizing the corresponding code. Using this relation we construct many explicit examples of physically distinct isospectral theories, as well as many examples of nonholomorphic functions, which satisfy all basic properties of the 2d CFT partition function, yet are not associated with any known CFT.
We constrain the spectrum of two-dimensional unitary, compact conformal field theories with central charge c > 1 using modular bootstrap. Upper bounds on the gap in the dimension of primary operators of any spin, as well as in the dimension of scalar
We study the Virasoro conformal block decomposition of the genus two partition function of a two-dimensional CFT by expanding around a Z3-invariant Riemann surface that is a three-fold cover of the Riemann sphere branched at four points, and explore
We explore the large spin spectrum in two-dimensional conformal field theories with a finite twist gap, using the modular bootstrap in the lightcone limit. By recursively solving the modular crossing equations associated to different $PSL(2,mathbb{Z}
We consider general fermionic quantum field theories with a global finite group symmetry $G$, focusing on the case of 2-dimensions and torus spacetime. The modular transformation properties of the family of partition functions with different backgrou
In this work we apply the lightcone bootstrap to a four-point function of scalars in two-dimensional conformal field theory. We include the entire Virasoro symmetry and consider non-rational theories with a gap in the spectrum from the vacuum and no