ﻻ يوجد ملخص باللغة العربية
We consider general fermionic quantum field theories with a global finite group symmetry $G$, focusing on the case of 2-dimensions and torus spacetime. The modular transformation properties of the family of partition functions with different backgrounds is determined by the t Hooft anomaly of $G$ and fermion parity. For a general possibly non-abelian $G$ we provide a method to determine the modular transformations directly from the bulk 3d invertible topological quantum field theory (iTQFT) corresponding to the anomaly by inflow. We also describe a method of evaluating the character map from the real representation ring of $G$ to the group which classifies anomalies. Physically the value of the map is given by the anomaly of free fermions in a given representation. We assume classification of the anomalies/iTQFTs by spin-cobordisms. As a byproduct, for all abelian symmetry groups $G$, we provide explicit combinatorial expressions for corresponding spin-bordism invariants in terms of surgery representation of arbitrary closed spin 3-manifolds. We work out the case of $G=mathbb{Z}_2$ in detail, and, as an application, we consider the constraints that t Hooft anomaly puts on the spectrum of the infrared conformal field theory.
We formulate a family of spin Topological Quantum Filed Theories (spin-TQFTs) as fermionic generalization of bosonic Dijkgraaf-Witten TQFTs. They are obtained by gauging $G$-equivariant invertible spin-TQFTs, or, in physics language, gauging the inte
We constrain the spectrum of two-dimensional unitary, compact conformal field theories with central charge c > 1 using modular bootstrap. Upper bounds on the gap in the dimension of primary operators of any spin, as well as in the dimension of scalar
We set up the conventional conformal bootstrap equations in Mellin space and analyse the anomalous dimensions and OPE coefficients of large spin double trace operators. By decomposing the equations in terms of continuous Hahn polynomials, we derive e
We study the Virasoro conformal block decomposition of the genus two partition function of a two-dimensional CFT by expanding around a Z3-invariant Riemann surface that is a three-fold cover of the Riemann sphere branched at four points, and explore
We explore the large spin spectrum in two-dimensional conformal field theories with a finite twist gap, using the modular bootstrap in the lightcone limit. By recursively solving the modular crossing equations associated to different $PSL(2,mathbb{Z}