ترغب بنشر مسار تعليمي؟ اضغط هنا

Lightcone Modular Bootstrap and Pure Gravity

139   0   0.0 ( 0 )
 نشر من قبل Nathan Benjamin
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the large spin spectrum in two-dimensional conformal field theories with a finite twist gap, using the modular bootstrap in the lightcone limit. By recursively solving the modular crossing equations associated to different $PSL(2,mathbb{Z})$ elements, we identify the universal contribution to the density of large spin states from the vacuum in the dual channel. Our result takes the form of a sum over $PSL(2,mathbb{Z})$ elements, whose leading term generalizes the usual Cardy formula to a wider regime. Rather curiously, the contribution to the density of states from the vacuum becomes negative in a specific limit, which can be canceled by that from a non-vacuum Virasoro primary whose twist is no bigger than $c-1over16$. This suggests a new upper bound of $c-1over 16$ on the twist gap in any $c>1$ compact, unitary conformal field theory with a vacuum, which would in particular imply that pure AdS$_3$ gravity does not exist. We confirm this negative density of states in the pure gravity partition function by Maloney, Witten, and Keller. We generalize our discussion to theories with $mathcal{N}=(1,1)$ supersymmetry, and find similar results.



قيم البحث

اقرأ أيضاً

We constrain the spectrum of two-dimensional unitary, compact conformal field theories with central charge c > 1 using modular bootstrap. Upper bounds on the gap in the dimension of primary operators of any spin, as well as in the dimension of scalar primaries, are computed numerically as functions of the central charge using semi-definite programming. Our bounds refine those of Hellerman and Friedan-Keller, and are in some cases saturated by known CFTs. In particular, we show that unitary CFTs with c < 8 must admit relevant deformations, and that a nontrivial bound on the gap of scalar primaries exists for c < 25. We also study bounds on the dimension gap in the presence of twist gaps, bounds on the degeneracy of operators, and demonstrate how extremal spectra which maximize the degeneracy at the gap can be determined numerically.
We study the Virasoro conformal block decomposition of the genus two partition function of a two-dimensional CFT by expanding around a Z3-invariant Riemann surface that is a three-fold cover of the Riemann sphere branched at four points, and explore constraints from genus two modular invariance and unitarity. In particular, we find critical surfaces that constrain the structure constants of a CFT beyond what is accessible via the crossing equation on the sphere.
We consider general fermionic quantum field theories with a global finite group symmetry $G$, focusing on the case of 2-dimensions and torus spacetime. The modular transformation properties of the family of partition functions with different backgrou nds is determined by the t Hooft anomaly of $G$ and fermion parity. For a general possibly non-abelian $G$ we provide a method to determine the modular transformations directly from the bulk 3d invertible topological quantum field theory (iTQFT) corresponding to the anomaly by inflow. We also describe a method of evaluating the character map from the real representation ring of $G$ to the group which classifies anomalies. Physically the value of the map is given by the anomaly of free fermions in a given representation. We assume classification of the anomalies/iTQFTs by spin-cobordisms. As a byproduct, for all abelian symmetry groups $G$, we provide explicit combinatorial expressions for corresponding spin-bordism invariants in terms of surgery representation of arbitrary closed spin 3-manifolds. We work out the case of $G=mathbb{Z}_2$ in detail, and, as an application, we consider the constraints that t Hooft anomaly puts on the spectrum of the infrared conformal field theory.
We revisit the spectrum of pure quantum gravity in AdS$_3$. The computation of the torus partition function will -- if computed using a gravitational path integral that includes only smooth saddle points -- lead to a density of states which is not ph ysically sensible, as it has a negative degeneracy of states for some energies and spins. We consider a minimal cure for this non-unitarity of the pure gravity partition function, which involves the inclusion of additional states below the black hole threshold. We propose a geometric interpretation for these extra states: they are conical defects with deficit angle $2pi(1-1/N)$, where $N$ is a positive integer. That only integer values of $N$ should be included can be seen from a modular bootstrap argument, and leads us to propose a modest extension of the set of saddle-point configurations that contribute to the gravitational path integral: one should sum over orbifolds in addition to smooth manifolds. These orbifold states are below the black hole threshold and are regarded as massive particles in AdS, but they are not perturbative states: they are too heavy to form multi-particle bound states. We compute the one-loop determinant for gravitons in these orbifold backgrounds, which confirms that the orbifold states are Virasoro primaries. We compute the gravitational partition function including the sum over these orbifolds and find a finite, modular invariant result; this finiteness involves a delicate cancellation between the infinite tower of orbifold states and an infinite number of instantons associated with $PSL(2,{mathbb Z})$ images.
In this work we apply the lightcone bootstrap to a four-point function of scalars in two-dimensional conformal field theory. We include the entire Virasoro symmetry and consider non-rational theories with a gap in the spectrum from the vacuum and no conserved currents. For those theories, we compute the large dimension limit (h/c>>1) of the OPE spectral decomposition of the Virasoro vacuum. We then propose a kernel ansatz that generalizes the spectral decomposition beyond h/c>>1. Finally, we estimate the corrections to the OPE spectral densities from the inclusion of the lightest operator in the spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا