ﻻ يوجد ملخص باللغة العربية
Searches for WIMP dark matter will in the near future be sensitive to solar neutrinos. Directional detection offers a method to reject solar neutrinos and improve WIMP searches, but reaching that sensitivity with existing directional detectors poses challenges. We propose a combined atomic/particle physics approach using a large-volume diamond detector. WIMP candidate events trigger a particle detector, after which spectroscopy of nitrogen vacancy centers reads out the direction of the incoming particle. We discuss the current state of technologies required to realize directional detection in diamond and present a path towards a detector with sensitivity below the neutrino floor.
The aim of the MIMAC project is to detect non-baryonic Dark Matter with a directional TPC using a high precision Micromegas readout plane. We will describe in detail the recent developments done with bulk Micromegas detectors as well as the character
The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the
Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from neutrons, the ultimate background for dark matter direct detection. This strategy requires both a precise measurement of the energy d
The dark matter directional detection opens a new field in cosmology bringing the possibility to build a map of nuclear recoils that would be able to explore the galactic dark matter halo giving access to a particle characterization of such matter an
The Time Projection method is an ideal candidate to track low energy release particles. Large volumes can be readout by means of a moderate number of channels providing a complete 3D reconstruction of the charged tracks within the sensitive volume. I