ترغب بنشر مسار تعليمي؟ اضغط هنا

MPGD Optical Read Out for Directional Dark Matter Search

95   0   0.0 ( 0 )
 نشر من قبل Giovanni Mazzitelli
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Time Projection method is an ideal candidate to track low energy release particles. Large volumes can be readout by means of a moderate number of channels providing a complete 3D reconstruction of the charged tracks within the sensitive volume. It allows the measurement not only of the total released energy but also of the energy release density along the tracks that can be very useful for particle identification and to solve the head-tail ambiguity of the tracks. Moreover, gas represents a very interesting target to study Dark Matter interactions. In gas, nuclear recoils can travel enough to give rise to tracks long enough to be acquired and reconstructed.



قيم البحث

اقرأ أيضاً

CYGNO is a project realising a cubic meter demonstrator to study the scalability of the performance of the optical approach for the readout of large-volume, GEM-equipped TPC. This is part of the CYGNUS proto-collaboration which aims at constructing a network of underground observatories for directional Dark Matter search. The combined use of high-granularity sCMOS and fast sensors for reading out the light produced in GEM channels during the multiplication processes was shown to allow on one hand to reconstruct 3D direction of the tracks, offering accurate energy measurements and sensitivity to the source directionality and, on the other hand, a high particle identification capability very useful to distinguish nuclear recoils. Results of the performed R&D and future steps toward a 30-100 cubic meter experiment will be presented.
The design of the project named CYGNO is presented. CYGNO is a new proposal supported by INFN, the Italian National Institute for Nuclear Physics, within CYGNUs proto-collaboration (CYGNUS-TPC) that aims to realize a distributed observatory in underg round laboratories for directional Dark Matter (DM) search and the identification of the coherent neutrino scattering (CNS) from the Sun. CYGNO is one of the first prototypes in the road map to 100-1000 m^3 of CYGNUs and will be located at the National Laboratory of Gran Sasso (LNGS), in Italy, aiming to make significant advances in the technology of single phase gas-only time projection chambers (TPC) for the application to the detection of rare scattering events. In particular it will focus on a read-out technique based on Micro Pattern Gas Detector (MPGD) amplification of the ionization and on the visible light collection with a sub-mm position resolution sCMOS (scientific COMS) camera. This type of readout - in conjunction with a fast light detection - will allow on one hand to reconstruct 3D direction of the tracks, offering accurate sensitivity to the source directionality and, on the other hand, a high particle identification capability very useful to distinguish nuclear recoils.
The CYGNO project has the goal to use a gaseous TPC with optical readout to detect dark matter and solar neutrinos with low energy threshold and directionality. The CYGNO demonstrator will consist of 1 m 3 volume filled with He:CF 4 gas mixture at at mospheric pressure. Optical readout with high granularity CMOS sensors, combined with fast light detectors, will provide a detailed reconstruction of the event topology. This will allow to discriminate the nuclear recoil signal from the background, mainly represented by low energy electron recoils induced by radioactivity. Thanks to the high reconstruction efficiency, CYGNO will be sensitive to low mass dark matter, and will have the potential to overcome the neutrino floor, that ultimately limits non-directional dark matter searches.
SF$_{6}$ is an inert and electronegative gas that has a long history of use in high voltage insulation and numerous other industrial applications. Although SF$_{6}$ is used as a trace component to introduce stability in tracking chambers, its highly electronegative properties have limited its use in tracking detectors. In this work we present a series of measurements with SF$_{6}$ as the primary gas in a low pressure Time Projection Chamber (TPC), with a thick GEM used as the avalanche and readout device. The first results of an $^{55}$Fe energy spectrum in SF$_{6}$ are presented. Measurements of the mobility and longitudinal diffusion confirm the negative ion drift of SF$_{6}$. However, the observed waveforms have a peculiar but interesting structure that indicates multiple drift species and a dependence on the reduced field ($E/p$), as well as on the level of water vapor contamination. The discovery of a distinct secondary peak in the waveform, together with its identification and use for fiducializing events in the TPC, are also presented. Our measurements demonstrate that SF$_{6}$ is an ideal gas for directional dark matter detection. In particular, the high fluorine content is desirable for spin-dependent sensitivity, negative ion drift ensures low diffusion over large drift distances, and the multiple species of charge carriers allow for full detector fiducialization.
We are building an experiment to search for dark matter in the form of dark photons in the nano- to milli-eV mass range. This experiment is the electromagnetic dual of magnetic detector dark radio experiments. It is also a frequency-time dual experim ent in two ways: We search for a high-Q signal in wide-band data rather than tuning a high-$Q$ resonator, and we measure electric rather than magnetic fields. In this paper we describe a pilot experiment using room temperature electronics which demonstrates feasibility and sets useful limits to the kinetic coupling $epsilon sim 10^{-12}$ over 50--300 MHz. With a factor of 2000 increase in real-time spectral coverage, and lower system noise temperature, it will soon be possible to search a wide range of masses at 100 times this sensitivity. We describe the planned experiment in two phases: Phase-I will implement a wide band, 5-million channel, real-time FFT processor over the 30--300 MHz range with a back-end time-domain optimal filter to search for the predicted $Qsim 10^6$ line using low-noise amplifiers. We have completed spot frequency calibrations using a biconical dipole antenna in a shielded room that extrapolate to a $5 sigma$ limit of $epsilonsim 10^{-13}$ for the coupling from the dark field, per month of integration. Phase-II will extend the search to 20 GHz using cryogenic preamplifiers and new antennas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا