ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergent Stereoselective Interactions and Self-recognition in Polar Chiral Active Ellipsoids

73   0   0.0 ( 0 )
 نشر من قبل Rajesh Ganapathy
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In many active matter systems, particle trajectories have a well-defined handedness or chirality. Whether such chiral activity can introduce stereoselective interactions between particles is not known. Here we developed a strategy to tune the nature of chiral activity of 3D-printed granular ellipsoids without altering their shape or size. In vertically agitated monolayers of these particles, we observed two types of dimers form depending on the chirality of the pairing monomers. Heterochiral dimers moved collectively as a single achiral active unit, while homochiral ones formed a translationally immobile spinner. In active racemic mixtures, the former was more abundant than the latter indicating stereoselectivity. Through dimer lifetime measurements, we provide compelling evidence for chiral self-recognition in mixtures of particles with different chiral activities. We finally show that changing only the net chirality of a dense active liquid from a racemic mixture to an enantiopure liquid fundamentally alters its nature of collective relaxation.

قيم البحث

اقرأ أيضاً

239 - Bao-quan Ai , Zhi-gang Shao , 2018
We study a binary mixture of polar chiral (counterclockwise or clockwise) active particles in a two-dimensional box with periodic boundary conditions. Beside the excluded volume interactions between particles, particles are also subject to the polar velocity alignment. From the extensive Brownian dynamics simulations, it is found that the particle configuration (mixing or demixing) is determined by the competition between the chirality difference and the polar velocity alignment. When the chirality difference competes with the polar velocity alignment, the clockwise particles aggregate in one cluster and the counterclockwise particles aggregate in the other cluster, thus particles are demixed and can be separated. However, when the chirality difference or the polar velocity alignment is dominated, particles are mixed. Our findings could be used for the experimental pursuit of the separation of binary mixtures of chiral active particles.
The shear-induced reversible self-organization of active rotors into strip-like aggregates is studied by carrying out computational simulations. The numerical and theoretical results demonstrate that the average width of the strips is linearly depend ent on the relative intensity of active torque to the shear rate of the imposed flow. In the particle strips, edge flows are observed to be against the imposed flow and play a crucial role to maintain the stability of the strips. Additionally, the rheological result shows the dependence of shear and rotational viscosities on the active torque direction and the oddness of normal stress response. By exhibiting a novel collective phenomenon of active rotors, our study paves the way of understanding the chiral active matter.
Despite their fundamentally non-equilibrium nature, the individual and collective behavior of active systems with polar propulsion and isotropic interactions (polar-isotropic active systems) are remarkably well captured by equilibrium mapping techniq ues. Here we examine two signatures of equilibrium systems -- the existence of a local free energy function and the independence of the coarse- grained behavior on the details of the microscopic dynamics -- in polar-isotropic active particles confined by hard walls of arbitrary geometry at the one-particle level. We find that boundaries that possess concave regions make the density profile strongly dynamics-dependent and give it a nonlocal dependence on the geometry of the confining box. This in turn constrains the scope of equilibrium mapping techniques in polar-isotropic active systems.
146 - Leiming Chen , Chiu Fan Lee , 2018
We study universal behavior in the moving phase of a generic system of motile particles with alignment interactions in the incompressible limit for spatial dimensions $d>2$. Using a dynamical renormalization group analysis, we obtain the exact dynami c, roughness, and anisotropy exponents that describe the scaling behavior of such incompressible systems. This is the first time a compelling argument has been given for the exact values of the anomalous scaling exponents of a flock moving through an isotropic medium in $d>2$.
Meso-scale turbulence was originally observed experimentally in various suspensions of swimming bacteria, as well as in the collective motion of active colloids. The corresponding large-scale dynamical patterns were reproduced in a simple model of a polar fluid, assuming a constant density of active particles. Recent, more detailed experimental studies revealed additional interesting aspects, such as anomalous velocity statistics and clustering phenomena. Those phenomena cannot be explained by currently available models for active polar fluids. Herein, we extend the continuum model suggested by Dunkel et al. to include density variations and a feedback between the local density and self-propulsion speed of the active particles. If the velocity decreases strong enough with the density, a linear stability analysis of the resulting model shows that, in addition to the short-wavelength instability of the original model, a long-wavelength instability occurs. This is typically observed for high densities of polar active particles and is analogous to the well-known phenomenon of motility-induced phase separation (MIPS) in scalar active matter. We determine a simple phase diagram indicating the linear instabilities and perform systematic numerical simulations for the various regions in the corresponding parameter space. The interplay between the well understood short-range instability and the long-range instability leads to interesting dynamics and novel phenomena concerning nucleation and coarsening processes. Our simulation results display a rich variety of novel patterns, including phase separation into domains with dynamically changing irregularly shaped boundaries. Anomalous velocity statistics are observed in all phases where the system segregates into regions of high and low densities. This offers a simple explanation for their occurrence in recent experiments with bacterial suspensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا