ﻻ يوجد ملخص باللغة العربية
Discretization is a fundamental step in numerical analysis for the problems described by differential equations, and the difference between the continuous model and discrete model is one of the most important problems. In this paper, we consider the difference in the effect of the time-dependent propagation speed on the energy estimate of the solutions for the wave equation and the semi-discrete wave equation which is a discretization with respect to space variables.
We investigate the long time behaviour of the $L^2$-energy of solutions to wave equations with variable speed. The novelty of the approach is the combination of estimates for higher order derivatives of the coefficient with a stabilisation property.
In this work, we investigate the influence of general damping and potential terms on the blow-up and lifespan estimates for energy solutions to power-type semilinear wave equations. The space-dependent damping and potential functions are assumed to b
We examine the short and long-time behaviors of time-fractional diffusion equations with variable space-dependent order. More precisely, we describe the time-evolution of the solution to these equations as the time parameter goes either to zero or to infinity.
We give a new and constructive proof of the existence of global-in-time weak solutions of the 3-dimensional incompressible semi-geostrophic equations (SG) in geostrophic coordinates, for arbitrary initial measures with compact support. This new proof
We study initial boundary value problems for linear evolution partial differential equations (PDEs) posed on a time-dependent interval $l_1(t)<x<l_2(t)$, $0<t<T$, where $l_1(t)$ and $l_2(t)$ are given, real, differentiable functions, and $T$ is an ar