ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalised energy conservation law for the wave equations with variable propagation speed

74   0   0.0 ( 0 )
 نشر من قبل Jens Wirth
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the long time behaviour of the $L^2$-energy of solutions to wave equations with variable speed. The novelty of the approach is the combination of estimates for higher order derivatives of the coefficient with a stabilisation property.

قيم البحث

اقرأ أيضاً

62 - Fumihiko Hirosawa 2020
Discretization is a fundamental step in numerical analysis for the problems described by differential equations, and the difference between the continuous model and discrete model is one of the most important problems. In this paper, we consider the difference in the effect of the time-dependent propagation speed on the energy estimate of the solutions for the wave equation and the semi-discrete wave equation which is a discretization with respect to space variables.
79 - Wenke Tan , Fan Wu 2021
In this paper, we study the energy equality for weak solutions to the non-resistive MHD equations with physical boundaries. Although the equations of magnetic field $b$ are of hyperbolic type, and the boundary effects are considered, we still prove t he global energy equality provided that $u in L^{q}_{loc}left(0, T ; L^{p}(Omega)right) text { for any } frac{1}{q}+frac{1}{p} leq frac{1}{2}, text { with } p geq 4,text{ and } b in L^{r}_{loc}left(0, T ; L^{s}(Omega)right) text { for any } frac{1}{r}+frac{1}{s} leq frac{1}{2}, text { with } s geq 4 $. In particular, compared with the existed results, we do not require any boundary layer assumptions and additional conditions on the pressure $P$. Our result requires the regularity of boundary $partialOmega$ is only Lipschitz which is the minimum requirement to make the boundary condition $bcdot n$ sense. To approach our result, we first separate the mollification of weak solutions from the boundary effect by considering a non-standard local energy equality and transform the boundary effects into the estimates of the gradient of cut-off functions. Then, by establishing a sharp $L^2L^2$ estimate for pressure $P$, we use zero boundary conditions of $u$ to inhibit the boundary effect and obtain global energy equality by choosing suitable cut-off functions.
Onsager conjectured that weak solutions of the Euler equations for incompressible fluids in 3D conserve energy only if they have a certain minimal smoothness, (of order of 1/3 fractional derivatives) and that they dissipate energy if they are rougher . In this paper we prove that energy is conserved for velocities in the function space $B^{1/3}_{3,c(NN)}$. We show that this space is sharp in a natural sense. We phrase the energy spectrum in terms of the Littlewood-Paley decomposition and show that the energy flux is controlled by local interactions. This locality is shown to hold also for the helicity flux; moreover, every weak solution of the Euler equations that belongs to $B^{2/3}_{3,c(NN)}$ conserves helicity. In contrast, in two dimensions, the strong locality of the enstrophy holds only in the ultraviolet range.
68 - W. Tan , Z.Yin 2021
In this paper, we consider the energy conservation and regularity of the weak solution $u$ to the Navier-Stokes equations in the endpoint case. We first construct a divergence-free field $u(t,x)$ which satisfies $lim_{tto T}sqrt{T-t}||u(t)||_{BMO}<in fty$ and $lim_{tto T}sqrt{T-t}||u(t)||_{L^infty}=infty$ to demonstrate that the Type II singularity is admissible in the endpoint case $uin L^{2,infty}(BMO)$. Secondly, we prove that if a suitable weak solution $u(t,x)$ satisfying $||u||_{L^{2,infty}([0,T];BMO(Omega))}<infty$ for arbitrary $Omegasubseteqmathbb{R}^3$ then the local energy equality is valid on $[0,T]timesOmega$. As a corollary, we also prove $||u||_{L^{2,infty}([0,T];BMO(mathbb{R}^3))}<infty$ implies the global energy equality on $[0,T]$. Thirdly, we show that as the solution $u$ approaches a finite blowup time $T$, the norm $||u(t)||_{BMO}$ must blow up at a rate faster than $frac{c}{sqrt{T-t}}$ with some absolute constant $c>0$. Furthermore, we prove that if $||u_3||_{L^{2,infty}([0,T];BMO(mathbb{R}^3))}=M<infty$ then there exists a small constant $c_M$ depended on $M$ such that if $||u_h||_{L^{2,infty}([0,T];BMO(mathbb{R}^3))}leq c_M$ then $u$ is regular on $(0,T]timesmathbb{R}^3$.
79 - Cyril Letrouit 2021
We revisit the paper [Mel86] by R. Melrose, providing a full proof of the main theorem on propagation of singularities for subelliptic wave equations, and linking this result with sub-Riemannian geometry. This result asserts that singularities of sub elliptic wave equations only propagate along null-bicharacteristics and abnormal extremal lifts of singular curve. As a new consequence, for x = y and denoting by K G the wave kernel, we obtain that the singular support of the distribution t $rightarrow$ K G (t, x, y) is included in the set of lengths of the normal geodesics joining x and y, at least up to the time equal to the minimal length of a singular curve joining x and y.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا