ﻻ يوجد ملخص باللغة العربية
In this paper, we consider a status updating system where updates are generated at a constant rate at $K$ sources and sent to the corresponding recipients through a broadcast channel. We assume that perfect channel state information (CSI) is available at the transmitter before each transmission, and the additive noise is negligible at the receivers. While the transmitter is able to utilize the CSI information to precode the updates, our object is to design optimal precoding schemes to minimize the summed average age of information (AoI) at the recipients. Under various assumptions on the size of each update and the number of antennas at the transmitter and the receivers, this paper identifies the corresponding age-optimal precoding and transmission scheduling strategies. Specifically, for the case where each user has one receiving antenna, a round-robin based updating scheme is shown to be optimal. For the two-user case where the number of antennas at each receiver is greater than the size of updates, a framed alternating updating scheme is proven to be optimal.
Integer-forcing (IF) precoding, also known as downlink IF, is a promising new approach for communication over multiple-input multiple-output (MIMO) broadcast channels. Inspired by the integer-forcing linear receiver for multiple-access channels, it g
Multiple-input multiple-output (MIMO) broadcast channels (BCs) (MIMO-BCs) with perfect channel state information (CSI) at the transmitter are considered. As joint user selection (US) and vector precoding (VP) (US-VP) with zero-forcing transmit beamfo
Polar codes are introduced for discrete memoryless broadcast channels. For $m$-user deterministic broadcast channels, polarization is applied to map uniformly random message bits from $m$ independent messages to one codeword while satisfying broadcas
A broadcast channel (BC) where the decoders cooperate via a one-sided link is considered. One common and two private messages are transmitted and the private message to the cooperative user should be kept secret from the cooperation-aided user. The s
A partially cooperative relay broadcast channel (RBC) is a three-node network with one source node and two destination nodes (destinations 1 and 2) where destination 1 can act as a relay to assist destination 2. Inner and outer bounds on the capacity