ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-System Analysis of Joint User Selection and Vector Precoding with Zero-Forcing Transmit Beamforming for MIMO Broadcast Channels

131   0   0.0 ( 0 )
 نشر من قبل Keigo Takeuchi
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiple-input multiple-output (MIMO) broadcast channels (BCs) (MIMO-BCs) with perfect channel state information (CSI) at the transmitter are considered. As joint user selection (US) and vector precoding (VP) (US-VP) with zero-forcing transmit beamforming (ZF-BF), US and continuous VP (CVP) (US-CVP) and data-dependent US (DD-US) are investigated. The replica method, developed in statistical physics, is used to analyze the energy penalties for the two US-VP schemes in the large-system limit, where the number of users, the number of selected users, and the number of transmit antennas tend to infinity with their ratios kept constant. Four observations are obtained in the large-system limit: First, the assumptions of replica symmetry (RS) and 1-step replica symmetry breaking (1RSB) for DD-US can provide acceptable approximations for low and moderate system loads, respectively. Secondly, DD-US outperforms CVP with random US in terms of the energy penalty for low-to-moderate system loads. Thirdly, the asymptotic energy penalty of DD-US is indistinguishable from that of US-CVP for low system loads. Finally, a greedy algorithm of DD-US proposed in authors previous work can achieve nearly optimal performance for low-to-moderate system loads.



قيم البحث

اقرأ أيضاً

Joint user selection (US) and vector precoding (US-VP) is proposed for multiuser multiple-input multiple-output (MU-MIMO) downlink. The main difference between joint US-VP and conventional US is that US depends on data symbols for joint US-VP, wherea s conventional US is independent of data symbols. The replica method is used to analyze the performance of joint US-VP in the large-system limit, where the numbers of transmit antennas, users, and selected users tend to infinity while their ratios are kept constant. The analysis under the assumptions of replica symmetry (RS) and 1-step replica symmetry breaking (1RSB) implies that optimal data-independent US provides nothing but the same performance as random US in the large-system limit, whereas data-independent US is capacity-achieving as only the number of users tends to infinity. It is shown that joint US-VP can provide a substantial reduction of the energy penalty in the large-system limit. Consequently, joint US-VP outperforms separate US-VP in terms of the achievable sum rate, which consists of a combination of vector precoding (VP) and data-independent US. In particular, data-dependent US can be applied to general modulation, and implemented with a greedy algorithm.
We analyze the performance of multiple input/multiple output (MIMO) communications systems employing spatial multiplexing and zero-forcing detection (ZF). The distribution of the ZF signal-to-noise ratio (SNR) is characterized when either the intende d stream or interfering streams experience Rician fading, and when the fading may be correlated on the transmit side. Previously, exact ZF analysis based on a well-known SNR expression has been hindered by the noncentrality of the Wishart distribution involved. In addition, approximation with a central-Wishart distribution has not proved consistently accurate. In contrast, the following exact ZF study proceeds from a lesser-known SNR expression that separates the intended and interfering channel-gain vectors. By first conditioning on, and then averaging over the interference, the ZF SNR distribution for Rician-Rayleigh fading is shown to be an infinite linear combination of gamma distributions. On the other hand, for Rayleigh-Rician fading, the ZF SNR is shown to be gamma-distributed. Based on the SNR distribution, we derive new series expressions for the ZF average error probability, outage probability, and ergodic capacity. Numerical results confirm the accuracy of our new expressions, and reveal effects of interference and channel statistics on performance.
Integer-forcing (IF) precoding, also known as downlink IF, is a promising new approach for communication over multiple-input multiple-output (MIMO) broadcast channels. Inspired by the integer-forcing linear receiver for multiple-access channels, it g eneralizes linear precoding by inducing an effective channel matrix that is approximately integer, rather than approximately identity. Combined with lattice encoding and a pre-inversion of the channel matrix at the transmitter, the scheme has the potential to outperform any linear precoding scheme, despite enjoying similar low complexity. In this paper, a specific IF precoding scheme, called diagonally-scaled exact IF (DIF), is proposed and shown to achieve maximum spatial multiplexing gain. For the special case of two receivers, in the high SNR regime, an optimal choice of parameters is derived analytically, leading to an almost closed-form expression for the achievable sum rate. In particular, it is shown that the gap to the sum capacity is upper bounded by 0.27 bits for any channel realization. For general SNR, a regularized version of DIF (RDIF) is proposed. Numerical results for two receivers under Rayleigh fading show that RDIF can achieve performance superior to optimal linear precoding and very close to the sum capacity.
172 - Songtao Feng , Jing Yang 2020
In this paper, we consider a status updating system where updates are generated at a constant rate at $K$ sources and sent to the corresponding recipients through a broadcast channel. We assume that perfect channel state information (CSI) is availabl e at the transmitter before each transmission, and the additive noise is negligible at the receivers. While the transmitter is able to utilize the CSI information to precode the updates, our object is to design optimal precoding schemes to minimize the summed average age of information (AoI) at the recipients. Under various assumptions on the size of each update and the number of antennas at the transmitter and the receivers, this paper identifies the corresponding age-optimal precoding and transmission scheduling strategies. Specifically, for the case where each user has one receiving antenna, a round-robin based updating scheme is shown to be optimal. For the two-user case where the number of antennas at each receiver is greater than the size of updates, a framed alternating updating scheme is proven to be optimal.
For multiple-input/multiple-output (MIMO) spatial multiplexing with zero-forcing detection (ZF), signal-to-noise ratio (SNR) analysis for Rician fading involves the cumbersome noncentral-Wishart distribution (NCWD) of the transmit sample-correlation (Gramian) matrix. An textsl{approximation} with a textsl{virtual} CWD previously yielded for the ZF SNR an approximate (virtual) Gamma distribution. However, analytical conditions qualifying the accuracy of the SNR-distribution approximation were unknown. Therefore, we have been attempting to exactly characterize ZF SNR for Rician fading. Our previous attempts succeeded only for the sole Rician-fading stream under Rician--Rayleigh fading, by writing it as scalar Schur complement (SC) in the Gramian. Herein, we pursue a more general, matrix-SC-based analysis to characterize SNRs when several streams may undergo Rician fading. On one hand, for full-Rician fading, the SC distribution is found to be exactly a CWD if and only if a channel-mean--correlation textsl{condition} holds. Interestingly, this CWD then coincides with the textsl{virtual} CWD ensuing from the textsl{approximation}. Thus, under the textsl{condition}, the actual and virtual SNR-distributions coincide. On the other hand, for Rician--Rayleigh fading, the matrix-SC distribution is characterized in terms of determinant of matrix with elementary-function entries, which also yields a new characterization of the ZF SNR. Average error probability results validate our analysis vs.~simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا