ترغب بنشر مسار تعليمي؟ اضغط هنا

A Self-organized model for network evolution

149   0   0.0 ( 0 )
 نشر من قبل Diego Garlaschelli
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we provide a detailed analysis, along with some extensions and additonal investigations, of a recently proposed self-organised model for the evolution of complex networks. Vertices of the network are characterised by a fitness variable evolving through an extremal dynamics process, as in the Bak-Sneppen model representing a prototype of Self-Organized Criticality. The network topology is in turn shaped by the fitness variable itself, as in the fitness network model. The system self-organizes to a nontrivial state, characterized by a power-law decay of dynamical and topological quantities above a critical threshold. The interplay between topology and dynamics in the system is the key ingredient leading to an unexpected behaviour of these quantities.



قيم البحث

اقرأ أيضاً

A projective network model is a model that enables predictions to be made based on a subsample of the network data, with the predictions remaining unchanged if a larger sample is taken into consideration. An exchangeable model is a model that does no t depend on the order in which nodes are sampled. Despite a large variety of non-equilibrium (growing) and equilibrium (static) sparse complex network models that are widely used in network science, how to reconcile sparseness (constant average degree) with the desired statistical properties of projectivity and exchangeability is currently an outstanding scientific problem. Here we propose a network process with hidden variables which is projective and can generate sparse power-law networks. Despite the model not being exchangeable, it can be closely related to exchangeable uncorrelated networks as indicated by its information theory characterization and its network entropy. The use of the proposed network process as a null model is here tested on real data, indicating that the model offers a promising avenue for statistical network modelling.
A Random Geometric Graph (RGG) ensemble is defined by the disordered distribution of its node locations. We investigate how this randomness drives sample-to-sample fluctuations in the dynamical properties of these graphs. We study the distributional properties of the algebraic connectivity which is informative of diffusion and synchronization timescales in graphs. We use numerical simulations to provide the first characterisation of the algebraic connectivity distribution for RGG ensembles. We find that the algebraic connectivity can show fluctuations relative to its mean on the order of $30 %$, even for relatively large RGG ensembles ($N=10^5$). We explore the factors driving these fluctuations for RGG ensembles with different choices of dimensionality, boundary conditions and node distributions. Within a given ensemble, the algebraic connectivity can covary with the minimum degree and can also be affected by the presence of density inhomogeneities in the nodal distribution. We also derive a closed-form expression for the expected algebraic connectivity for RGGs with periodic boundary conditions for general dimension.
306 - Yukio Hayashi 2017
Todays economy, production activity, and our life are sustained by social and technological network infrastructures, while new threats of network attacks by destructing loops have been found recently in network science. We inversely take into account the weakness, and propose a new design principle for incrementally growing robust networks. The networks are self-organized by enhancing interwoven long loops. In particular, we consider the range-limited approximation of linking by intermediations in a few hops, and show the strong robustness in the growth without degrading efficiency of paths. Moreover, we demonstrate that the tolerance of connectivity is reformable even from extremely vulnerable real networks according to our proposed growing process with some investment. These results may indicate a prospective direction to the future growth of our network infrastructures.
Individual nodes in evolving real-world networks typically experience growth and decay --- that is, the popularity and influence of individuals peaks and then fades. In this paper, we study this phenomenon via an intrinsic nodal fitness function and an intuitive aging mechanism. Each node of the network is endowed with a fitness which represents its activity. All the nodes have two discrete stages: active and inactive. The evolution of the network combines the addition of new active nodes randomly connected to existing active ones and the deactivation of old active nodes with possibility inversely proportional to their fitnesses. We obtain a structured exponential network when the fitness distribution of the individuals is homogeneous and a structured scale-free network with heterogeneous fitness distributions. Furthermore, we recover two universal scaling laws of the clustering coefficient for both cases, $C(k) sim k^{-1}$ and $C sim n^{-1}$, where $k$ and $n$ refer to the node degree and the number of active individuals, respectively. These results offer a new simple description of the growth and aging of networks where intrinsic features of individual nodes drive their popularity, and hence degree.
Nature, technology and society are full of complexity arising from the intricate web of the interactions among the units of the related systems (e.g., proteins, computers, people). Consequently, one of the most successful recent approaches to capturi ng the fundamental features of the structure and dynamics of complex systems has been the investigation of the networks associated with the above units (nodes) together with their relations (edges). Most complex systems have an inherently hierarchical organization and, correspondingly, the networks behind them also exhibit hierarchical features. Indeed, several papers have been devoted to describing this essential aspect of networks, however, without resulting in a widely accepted, converging concept concerning the quantitative characterization of the level of their hierarchy. Here we develop an approach and propose a quantity (measure) which is simple enough to be widely applicable, reveals a number of universal features of the organization of real-world networks and, as we demonstrate, is capable of capturing the essential features of the structure and the degree of hierarchy in a complex network. The measure we introduce is based on a generalization of the m-reach centrality, which we first extend to directed/partially directed graphs. Then, we define the global reaching centrality (GRC), which is the difference between the maximum and the average value of the generalized reach centralities over the network. We investigate the behavior of the GRC considering both a synthetic model with an adjustable level of hierarchy and real networks. Results for real networks show that our hierarchy measure is related to the controllability of the given system. We also propose a visualization procedure for large complex networks that can be used to obtain an overall qualitative picture about the nature of their hierarchical structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا