ﻻ يوجد ملخص باللغة العربية
The discrete truncated Wigner approximation (DTWA) is a powerful tool for analyzing dynamics of quantum spin systems. Since the DTWA includes the leading-order quantum corrections to a mean-field approximation, it is naturally expected that the DTWA becomes more accurate when the range of interactions of the system increases. However, quantitative corroboration of this expectation is still lacking mainly because it is generally difficult in a large system to evaluate a timescale on which the DTWA is quantitatively valid. In order to investigate how the validity timescale depends on the interaction range, we analyze dynamics of quantum spin models with a step function type interaction subjected to a sudden quench of a magnetic field by means of both DTWA and its extension including the second-order correction, which is derived from the Bogoliubov-Born-Green-Kirkwood-Yvon equation. We also develop a formulation for calculating the second-order Renyi entropy within the framework of the DTWA. By comparing the time evolution of the Renyi entropy computed by the DTWA with that by the extension including the correction, we find that both in the one- and two-dimensional systems the validity timescale increases algebraically with the range of the step function type interaction.
Nonadiabatic molecular dynamics occur in a wide range of chemical reactions and femtochemistry experiments involving electronically excited states. These dynamics are hard to treat numerically as the systems complexity increases and it is thus desira
By means of the discrete truncated Wigner approximation we study dynamical phase transitions arising in the steady state of transverse-field Ising models after a quantum quench. Starting from a fully polarized ferromagnetic initial condition these tr
Studying entanglement growth in quantum dynamics provides both insight into the underlying microscopic processes and information about the complexity of the quantum states, which is related to the efficiency of simulations on classical computers. Rec
We develop and utilize the SU(3) truncated Wigner approximation (TWA) in order to analyze far-from-equilibrium quantum dynamics of strongly interacting Bose gases in an optical lattice. Specifically, we explicitly represent the corresponding Bose--Hu
In recent years, dynamical phase transitions and out-of-equilibrium criticality have been at the forefront of ultracold gases and condensed matter research. Whereas universality and scaling are established topics in equilibrium quantum many-body phys