ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized Discrete Truncated Wigner Approximation for Nonadiabtic Quantum-Classical Dynamics

80   0   0.0 ( 0 )
 نشر من قبل Haifeng Lang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonadiabatic molecular dynamics occur in a wide range of chemical reactions and femtochemistry experiments involving electronically excited states. These dynamics are hard to treat numerically as the systems complexity increases and it is thus desirable to have accurate yet affordable methods for their simulation. Here, we introduce a linearized semiclassical method, the generalized discrete truncated Wigner approximation (GDTWA), which is well-established in the context of quantum spin lattice systems, into the arena of chemical nonadiabatic systems. In contrast to traditional continuous mapping approaches, e.g. the Meyer-Miller-Stock-Thoss and the spin mappings, GDTWA samples the electron degrees of freedom in a discrete phase space, and thus forbids an unphysical unbounded growth of electronic state populations. The discrete sampling also accounts for an effective reduced but non-vanishing zero-point energy without an explicit parameter, which makes it possible to treat the identity operator and other operators on an equal footing. As numerical benchmarks on two Linear Vibronic Coupling models show, GDTWA has a satisfactory accuracy in a wide parameter regime, independently of whether the dynamics is dominated by relaxation or by coherent interactions. Our results suggest that the method can be very adequate to treat challenging nonadiabatic dynamics problems in chemistry and related fields.

قيم البحث

اقرأ أيضاً

Large-scale quantum devices provide insights beyond the reach of classical simulations. However, for a reliable and verifiable quantum simulation, the building blocks of the quantum device require exquisite benchmarking. This benchmarking of large sc ale dynamical quantum systems represents a major challenge due to lack of efficient tools for their simulation. Here, we present a scalable algorithm based on neural networks for Hamiltonian tomography in out-of-equilibrium quantum systems. We illustrate our approach using a model for a forefront quantum simulation platform: ultracold atoms in optical lattices. Specifically, we show that our algorithm is able to reconstruct the Hamiltonian of an arbitrary size quasi-1D bosonic system using an accessible amount of experimental measurements. We are able to significantly increase the previously known parameter precision.
Finding the global minimum in a rugged potential landscape is a computationally hard task, often equivalent to relevant optimization problems. Simulated annealing is a computational technique which explores the configuration space by mimicking therma l noise. By slow cooling, it freezes the system in a low-energy configuration, but the algorithm often gets stuck in local minima. In quantum annealing, the thermal noise is replaced by controllable quantum fluctuations, and the technique can be implemented in modern quantum simulators. However, quantum-adiabatic schemes become prohibitively slow in the presence of quasidegeneracies. Here we propose a strategy which combines ideas from simulated annealing and quantum annealing. In such hybrid algorithm, the outcome of a quantum simulator is processed on a classical device. While the quantum simulator explores the configuration space by repeatedly applying quantum fluctuations and performing projective measurements, the classical computer evaluates each configuration and enforces a lowering of the energy. We have simulated this algorithm for small instances of the random energy model, showing that it potentially outperforms both simulated thermal annealing and adiabatic quantum annealing. It becomes most efficient for problems involving many quasi-degenerate ground states.
We study the out-of-equilibrium dynamics in the quantum Ising model with power-law interactions and positional disorder. For arbitrary dimension $d$ and interaction range $alpha geq d$ we analytically find a stretched exponential decay of the global magnetization and ensemble-averaged single-spin purity with a stretch-power $beta = d/alpha$ in the thermodynamic limit. Numerically, we confirm that glassy behavior persists for finite system sizes and sufficiently strong disorder. We identify dephasing between disordered coherent pairs as the main mechanism leading to a relaxation of global magnetization, whereas genuine many-body interactions lead to a loss of single-spin purity which signifies the build-up of entanglement. The emergence of glassy dynamics in the quantum Ising model extends prior findings in classical and open quantum systems, where the stretched exponential law is explained by a scale-invariant distribution of time scales, to both integrable and non-integrable quantum systems.
The control of many-body quantum dynamics in complex systems is a key challenge in the quest to reliably produce and manipulate large-scale quantum entangled states. Recently, quench experiments in Rydberg atom arrays (Bluvstein et. al., arXiv:2012.1 2276) demonstrated that coherent revivals associated with quantum many-body scars can be stabilized by periodic driving, generating stable subharmonic responses over a wide parameter regime. We analyze a simple, related model where these phenomena originate from spatiotemporal ordering in an effective Floquet unitary, corresponding to discrete time-crystalline (DTC) behavior in a prethermal regime. Unlike conventional DTC, the subharmonic response exists only for Neel-like initial states, associated with quantum scars. We predict robustness to perturbations and identify emergent timescales that could be observed in future experiments. Our results suggest a route to controlling entanglement in interacting quantum systems by combining periodic driving with many-body scars.
Understanding the dynamics of strongly interacting disordered quantum systems is one of the most challenging problems in modern science, due to features such as the breakdown of thermalization and the emergence of glassy phases of matter. We report o n the observation of anomalous relaxation dynamics in an isolated XXZ quantum spin system realized by an ultracold gas of atoms initially prepared in a superposition of two-different Rydberg states. The total magnetization is found to exhibit sub-exponential relaxation analogous to classical glassy dynamics, but in the quantum case this relaxation originates from the build-up of non-classical correlations. In both experiment and semi-classical simulations, we find the evolution towards a randomized state is independent of the strength of disorder up to a critical value. This hints towards a unifying description of relaxation dynamics in disordered isolated quantum systems, analogous to the generalization of statistical mechanics to out-of-equilibrium scenarios in classical spin glasses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا