ﻻ يوجد ملخص باللغة العربية
Studying entanglement growth in quantum dynamics provides both insight into the underlying microscopic processes and information about the complexity of the quantum states, which is related to the efficiency of simulations on classical computers. Recently, experiments with trapped ions, polar molecules, and Rydberg excitations have provided new opportunities to observe dynamics with long-range interactions. We explore nonequilibrium coherent dynamics after a quantum quench in such systems, identifying qualitatively different behavior as the exponent of algebraically decaying spin-spin interactions in a transverse Ising chain is varied. Computing the build-up of bipartite entanglement as well as mutual information between distant spins, we identify linear growth of entanglement entropy corresponding to propagation of quasiparticles for shorter range interactions, with the maximum rate of growth occurring when the Hamiltonian parameters match those for the quantum phase transition. Counter-intuitively, the growth of bipartite entanglement for long-range interactions is only logarithmic for most regimes, i.e., substantially slower than for shorter range interactions. Experiments with trapped ions allow for the realization of this system with a tunable interaction range, and we show that the different phenomena are robust for finite system sizes and in the presence of noise. These results can act as a direct guide for the generation of large-scale entanglement in such experiments, towards a regime where the entanglement growth can render existing classical simulations inefficient.
Infinite-range interactions are known to facilitate the production of highly entangled states with applications in quantum information and metrology. However, many experimental systems have interactions that decay with distance, and the achievable be
We induce strong non-local interactions in a 2D Fermi gas in an optical lattice using Rydberg dressing. The system is approximately described by a $t-V$ model on a square lattice where the fermions experience isotropic nearest-neighbor interactions a
We propose a simple scheme for tomography of band-insulating states in one- and two-dimensional optical lattices with two sublattice states. In particular, the scheme maps out the Berry curvature in the entire Brillouin zone and extracts topological
The discrete truncated Wigner approximation (DTWA) is a powerful tool for analyzing dynamics of quantum spin systems. Since the DTWA includes the leading-order quantum corrections to a mean-field approximation, it is naturally expected that the DTWA
We unravel the ground state properties and the non-equilibrium quantum dynamics of two bosonic impurities immersed in an one-dimensional fermionic environment by applying a quench of the impurity-medium interaction strength. In the ground state, the