ترغب بنشر مسار تعليمي؟ اضغط هنا

AI-based Modeling and Data-driven Evaluation for Smart Manufacturing Processes

58   0   0.0 ( 0 )
 نشر من قبل Mohammadhossein Ghahramani
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Smart Manufacturing refers to optimization techniques that are implemented in production operations by utilizing advanced analytics approaches. With the widespread increase in deploying Industrial Internet of Things (IIoT) sensors in manufacturing processes, there is a progressive need for optimal and effective approaches to data management. Embracing Machine Learning and Artificial Intelligence to take advantage of manufacturing data can lead to efficient and intelligent automation. In this paper, we conduct a comprehensive analysis based on Evolutionary Computing and Deep Learning algorithms toward making semiconductor manufacturing smart. We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes and to address various challenges. We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm. Our objective is to provide an advanced solution for controlling manufacturing processes and to gain perspective on various dimensions that enable manufacturers to access effective predictive technologies.

قيم البحث

اقرأ أيضاً

Recently there has been growing interest in modeling sets with exchangeability such as point clouds. A shortcoming of current approaches is that they restrict the cardinality of the sets considered or can only express limited forms of distribution ov er unobserved data. To overcome these limitations, we introduce Energy-Based Processes (EBPs), which extend energy based models to exchangeable data while allowing neural network parameterizations of the energy function. A key advantage of these models is the ability to express more flexible distributions over sets without restricting their cardinality. We develop an efficient training procedure for EBPs that demonstrates state-of-the-art performance on a variety of tasks such as point cloud generation, classification, denoising, and image completion.
A smart Ponzi scheme is a new form of economic crime that uses Ethereum smart contract account and cryptocurrency to implement Ponzi scheme. The smart Ponzi scheme has harmed the interests of many investors, but researches on smart Ponzi scheme detec tion is still very limited. The existing smart Ponzi scheme detection methods have the problems of requiring many human resources in feature engineering and poor model portability. To solve these problems, we propose a data-driven smart Ponzi scheme detection system in this paper. The system uses dynamic graph embedding technology to automatically learn the representation of an account based on multi-source and multi-modal data related to account transactions. Compared with traditional methods, the proposed system requires very limited human-computer interaction. To the best of our knowledge, this is the first work to implement smart Ponzi scheme detection through dynamic graph embedding. Experimental results show that this method is significantly better than the existing smart Ponzi scheme detection methods.
A better understanding of dispersion in natural streams requires knowledge of longitudinal dispersion coefficient(LDC). Various methods have been proposed for predictions of LDC. Those studies can be grouped into three types: analytical, statistical and ML-driven researches(Implicit and explicit). However, a comprehensive evaluation of them is still lacking. In this paper, we first present an in-depth analysis of those methods and find out their defects. This is carried out on an extensive database composed of 660 samples of hydraulic and channel properties worldwide. The reliability and representativeness of utilized data are enhanced through the deployment of the Subset Selection of Maximum Dissimilarity(SSMD) for testing set selection and the Inter Quartile Range(IQR) for removal of the outlier. The evaluation reveals the rank of those methods as: ML-driven method > the statistical method > the analytical method. Whereas implicit ML-driven methods are black-boxes in nature, explicit ML-driven methods have more potential in prediction of LDC. Besides, overfitting is a universal problem in existing models. Those models also suffer from a fixed parameter combination. To establish an interpretable model for LDC prediction with higher performance, we then design a novel symbolic regression method called evolutionary symbolic regression network(ESRN). It is a combination of genetic algorithms and neural networks. Strategies are introduced to avoid overfitting and explore more parameter combinations. Results show that the ESRN model has superiorities over other existing symbolic models in performance. The proposed model is suitable for practical engineering problems due to its advantage in low requirement of parameters (only w and U* are required). It can provide convincing solutions for situations where the field test cannot be carried out or limited field information can be obtained.
Recommender systems attempts to identify and recommend the most preferable item (product-service) to an individual user. These systems predict user interest in items based on related items, users, and the interactions between items and users. We aim to build an auto-routine and color scheme recommender system that leverages a wealth of historical data and machine learning methods. We introduce an unsupervised method to recommend a routine for lighting. Moreover, by analyzing users daily logs, geographical location, temporal and usage information we understand user preference and predict their preferred color for lights. To do so, we cluster users based on their geographical information and usage distribution. We then build and train a predictive model within each cluster and aggregate the results. Results indicate that models based on similar users increases the prediction accuracy, with and without prior knowledge about user preferences.
Human and AI are increasingly interacting and collaborating to accomplish various complex tasks in the context of diverse application domains (e.g., healthcare, transportation, and creative design). Two dynamic, learning entities (AI and human) have distinct mental model, expertise, and ability; such fundamental difference/mismatch offers opportunities for bringing new perspectives to achieve better results. However, this mismatch can cause unexpected failure and result in serious consequences. While recent research has paid much attention to enhancing interpretability or explainability to allow machine to explain how it makes a decision for supporting humans, this research argues that there is urging the need for both human and AI should develop specific, corresponding ability to interact and collaborate with each other to form a human-AI team to accomplish superior results. This research introduces a conceptual framework called Co-Learning, in which people can learn with/from and grow with AI partners over time. We characterize three key concepts of co-learning: mutual understanding, mutual benefits, and mutual growth for facilitating human-AI collaboration on complex problem solving. We will present proof-of-concepts to investigate whether and how our approach can help human-AI team to understand and benefit each other, and ultimately improve productivity and creativity on creative problem domains. The insights will contribute to the design of Human-AI collaboration.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا