ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy-Based Processes for Exchangeable Data

69   0   0.0 ( 0 )
 نشر من قبل Mengjiao Yang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently there has been growing interest in modeling sets with exchangeability such as point clouds. A shortcoming of current approaches is that they restrict the cardinality of the sets considered or can only express limited forms of distribution over unobserved data. To overcome these limitations, we introduce Energy-Based Processes (EBPs), which extend energy based models to exchangeable data while allowing neural network parameterizations of the energy function. A key advantage of these models is the ability to express more flexible distributions over sets without restricting their cardinality. We develop an efficient training procedure for EBPs that demonstrates state-of-the-art performance on a variety of tasks such as point cloud generation, classification, denoising, and image completion.

قيم البحث

اقرأ أيضاً

Smart Manufacturing refers to optimization techniques that are implemented in production operations by utilizing advanced analytics approaches. With the widespread increase in deploying Industrial Internet of Things (IIoT) sensors in manufacturing pr ocesses, there is a progressive need for optimal and effective approaches to data management. Embracing Machine Learning and Artificial Intelligence to take advantage of manufacturing data can lead to efficient and intelligent automation. In this paper, we conduct a comprehensive analysis based on Evolutionary Computing and Deep Learning algorithms toward making semiconductor manufacturing smart. We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes and to address various challenges. We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm. Our objective is to provide an advanced solution for controlling manufacturing processes and to gain perspective on various dimensions that enable manufacturers to access effective predictive technologies.
We tackle a common scenario in imitation learning (IL), where agents try to recover the optimal policy from expert demonstrations without further access to the expert or environment reward signals. Except the simple Behavior Cloning (BC) that adopts supervised learning followed by the problem of compounding error, previous solutions like inverse reinforcement learning (IRL) and recent generative adversarial methods involve a bi-level or alternating optimization for updating the reward function and the policy, suffering from high computational cost and training instability. Inspired by recent progress in energy-based model (EBM), in this paper, we propose a simplified IL framework named Energy-Based Imitation Learning (EBIL). Instead of updating the reward and policy iteratively, EBIL breaks out of the traditional IRL paradigm by a simple and flexible two-stage solution: first estimating the expert energy as the surrogate reward function through score matching, then utilizing such a reward for learning the policy by reinforcement learning algorithms. EBIL combines the idea of both EBM and occupancy measure matching, and via theoretic analysis we reveal that EBIL and Max-Entropy IRL (MaxEnt IRL) approaches are two sides of the same coin, and thus EBIL could be an alternative of adversarial IRL methods. Extensive experiments on qualitative and quantitative evaluations indicate that EBIL is able to recover meaningful and interpretative reward signals while achieving effective and comparable performance against existing algorithms on IL benchmarks.
In this paper, we propose conjugate energy-based models (CEBMs), a new class of energy-based models that define a joint density over data and latent variables. The joint density of a CEBM decomposes into an intractable distribution over data and a tr actable posterior over latent variables. CEBMs have similar use cases as variational autoencoders, in the sense that they learn an unsupervised mapping from data to latent variables. However, these models omit a generator network, which allows them to learn more flexible notions of similarity between data points. Our experiments demonstrate that conjugate EBMs achieve competitive results in terms of image modelling, predictive power of latent space, and out-of-domain detection on a variety of datasets.
Automata learning techniques automatically generate system models from test observations. These techniques usually fall into two categories: passive and active. Passive learning uses a predetermined data set, e.g., system logs. In contrast, active le arning actively queries the system under learning, which is considered more efficient. An influential active learning technique is Angluins L* algorithm for regular languages which inspired several generalisations from DFAs to other automata-based modelling formalisms. In this work, we study L*-based learning of deterministic Markov decision processes, first assuming an ideal setting with perfect information. Then, we relax this assumption and present a novel learning algorithm that collects information by sampling system traces via testing. Experiments with the implementation of our sampling-based algorithm suggest that it achieves better accuracy than state-of-the-art passive learning techniques with the same amount of test data. Unlike existing learning algorithms with predefined states, our algorithm learns the complete model structure including the states.
We propose a similarity measure for sparsely sampled time course data in the form of a log-likelihood ratio of Gaussian processes (GP). The proposed GP similarity is similar to a Bayes factor and provides enhanced robustness to noise in sparse time s eries, such as those found in various biological settings, e.g., gene transcriptomics. We show that the GP measure is equivalent to the Euclidean distance when the noise variance in the GP is negligible compared to the noise variance of the signal. Our numerical experiments on both synthetic and real data show improved performance of the GP similarity when used in conjunction with two distance-based clustering methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا