ﻻ يوجد ملخص باللغة العربية
In the field of disparities research, there has been growing interest in developing a counterfactual-based decomposition analysis to identify underlying mediating mechanisms that help reduce disparities in populations. Despite rapid development in the area, most prior studies have been limited to regression-based methods, undermining the possibility of addressing complex models with multiple mediators and/or heterogeneous effects. We propose an estimation method that effectively addresses complex models. Moreover, we develop a novel sensitivity analysis for possible violations of identification assumptions. The proposed method and sensitivity analysis are demonstrated with data from the Midlife Development in the US study to investigate the degree to which disparities in cardiovascular health at the intersection of race and gender would be reduced if the distributions of education and perceived discrimination were the same across intersectional groups.
While a randomized controlled trial (RCT) readily measures the average treatment effect (ATE), this measure may need to be generalized to the target population to account for a sampling bias in the RCTs population. Identifying this target population
Causal variance decompositions for a given disease-specific quality indicator can be used to quantify differences in performance between hospitals or health care providers. While variance decompositions can demonstrate variation in quality of care, c
Sensitivity indices when the inputs of a model are not independent are estimated by local polynomial techniques. Two original estimators based on local polynomial smoothers are proposed. Both have good theoretical properties which are exhibited and a
Causal effect estimation from observational data is an important but challenging problem. Causal effect estimation with unobserved variables in data is even more difficult. The challenges lie in (1) whether the causal effect can be estimated from obs
In causal mediation studies that decompose an average treatment effect into a natural indirect effect (NIE) and a natural direct effect (NDE), examples of post-treatment confounding are abundant. Past research has generally considered it infeasible t