ﻻ يوجد ملخص باللغة العربية
Sensitivity indices when the inputs of a model are not independent are estimated by local polynomial techniques. Two original estimators based on local polynomial smoothers are proposed. Both have good theoretical properties which are exhibited and also illustrated through analytical examples. They are used to carry out a sensitivity analysis on a real case of a kinetic model with correlated parameters.
Uncertainties exist in both physics-based and data-driven models. Variance-based sensitivity analysis characterizes how the variance of a model output is propagated from the model inputs. The Sobol index is one of the most widely used sensitivity ind
Statistical models with latent structure have a history going back to the 1950s and have seen widespread use in the social sciences and, more recently, in computational biology and in machine learning. Here we study the basic latent class model propo
We derive Laplace-approximated maximum likelihood estimators (GLAMLEs) of parameters in our Graph Generalized Linear Latent Variable Models. Then, we study the statistical properties of GLAMLEs when the number of nodes $n_V$ and the observed times of
In this paper we derive locally D-optimal designs for discrete choice experiments based on multinomial probit models. These models include several discrete explanatory variables as well as a quantitative one. The commonly used multinomial logit model
We propose a new method for changepoint estimation in partially-observed, high-dimensional time series that undergo a simultaneous change in mean in a sparse subset of coordinates. Our first methodological contribution is to introduce a MissCUSUM tra