ﻻ يوجد ملخص باللغة العربية
In causal mediation studies that decompose an average treatment effect into a natural indirect effect (NIE) and a natural direct effect (NDE), examples of post-treatment confounding are abundant. Past research has generally considered it infeasible to adjust for a post-treatment confounder of the mediator-outcome relationship due to incomplete information: it is observed under the actual treatment condition while missing under the counterfactual treatment condition. This study proposes a new sensitivity analysis strategy for handling post-treatment confounding and incorporates it into weighting-based causal mediation analysis without making extra identification assumptions. Under the sequential ignorability of the treatment assignment and of the mediator, we obtain the conditional distribution of the post-treatment confounder under the counterfactual treatment as a function of not just pretreatment covariates but also its counterpart under the actual treatment. The sensitivity analysis then generates a bound for the NIE and that for the NDE over a plausible range of the conditional correlation between the post-treatment confounder under the actual and that under the counterfactual conditions. Implemented through either imputation or integration, the strategy is suitable for binary as well as continuous measures of post-treatment confounders. Simulation results demonstrate major strengths and potential limitations of this new solution. A re-analysis of the National Evaluation of Welfare-to-Work Strategies (NEWWS) Riverside data reveals that the initial analytic results are sensitive to omitted post-treatment confounding.
Establishing cause-effect relationships from observational data often relies on untestable assumptions. It is crucial to know whether, and to what extent, the conclusions drawn from non-experimental studies are robust to potential unmeasured confound
Although the exposure can be randomly assigned in studies of mediation effects, any form of direct intervention on the mediator is often infeasible. As a result, unmeasured mediator-outcome confounding can seldom be ruled out. We propose semiparametr
In employing spatial regression models for counts, we usually meet two issues. First, ignoring the inherent collinearity between covariates and the spatial effect would lead to causal inferences. Second, real count data usually reveal over or under-d
Analyses of environmental phenomena often are concerned with understanding unlikely events such as floods, heatwaves, droughts or high concentrations of pollutants. Yet the majority of the causal inference literature has focused on modelling means, r
While a randomized controlled trial (RCT) readily measures the average treatment effect (ATE), this measure may need to be generalized to the target population to account for a sampling bias in the RCTs population. Identifying this target population