ﻻ يوجد ملخص باللغة العربية
We investigate signatures of magnetic fields and activity at the surface and in the prominence system of the ultra-rapid rotator V530 Per, a G-type solar-like member of the young open cluster $alpha$~Persei. This object has a rotation period shorter than all stars with available magnetic maps. With a time-series of spectropolarimetric observations gathered with ESPaDOnS over 2 nights on the CFHT, we reconstruct the surface brightness and large-scale magnetic field of V530 Per using the Zeeman-Doppler imaging method, assuming an oblate stellar surface. We also estimate the short term evolution of the brightness distribution through latitudinal differential rotation. Using the same data set, we finally map the spatial distribution of prominences through tomography of the Halpha emission. The brightness map is dominated by a large, dark spot near the pole, accompanied by a complex distribution of bright and dark features at lower latitudes. The magnetic field map is reconstructed as well, most of the large-scale magnetic field energy is stored in the toroidal field component. The main radial field structure is a positive region of about 500 G, at the location of the dark polar spot. The brightness map of V530 Per is sheared by solar-like differential rotation, with a roughly solar value for the difference in rotation rate between the pole and equator. halpha~is observed in emission, and is mostly modulated by the stellar rotation period. The prominence system is organized in a ring at the approximate location of the co-rotation radius, with significant evolution between the two observing nights. V530 Per is the first example of a solar-type star to have its surface magnetic field and prominences mapped together, which will bring important observational constraints to better understand the role of slingshot prominences in the angular momentum evolution of the most active stars.
We investigate the influence of the geometry of the solar filament magnetic structure on the large-amplitude longitudinal oscillations. A representative filament flux tube is modeled as composed of a cool thread centered in a dipped part with hot cor
Observations and models of solar prominences are reviewed. We focus on non-eruptive prominences, and describe recent progress in four areas of prominence research: (1) magnetic structure deduced from observations and models, (2) the dynamics of promi
We analyse interferometric data obtained for Regulus with AMBER (Astronomical Multi- BEam combineR) at high spectral resolution ($lambda/deltalambda approx 12000$) across the Br$gamma$ spectral line. The study of the photocentre displacement allows u
Solar prominences are subject to both field-aligned (longitudinal) and transverse oscillatory motions, as evidenced by an increasing number of observations. Large-amplitude longitudinal motions provide valuable information on the geometry of the fila
We present a comprehensive set of spectral data from two quiescent solar prominences observed in parallel from space and ground: with the VTT, simultaneous two-dimensional imaging of H-beta 4862 and Ca II 8542 yields a constant ratio, indicating smal