ﻻ يوجد ملخص باللغة العربية
We investigate the influence of the geometry of the solar filament magnetic structure on the large-amplitude longitudinal oscillations. A representative filament flux tube is modeled as composed of a cool thread centered in a dipped part with hot coronal regions on either side. We have found the normal modes of the system, and establish that the observed longitudinal oscillations are well described with the fundamental mode. For small and intermediate curvature radii and moderate to large density contrast between the prominence and the corona, the main restoring force is the solar gravity. In this full wave description of the oscillation a simple expression for the oscillation frequencies is derived in which the pressure-driven term introduces a small correction. We have also found that the normal modes are almost independent of the geometry of the hot regions of the tube. We conclude that observed large-amplitude longitudinal oscillations are driven by the projected gravity along the flux tubes, and are strongly influenced by the curvature of the dips of the magnetic field in which the threads reside.
Solar prominences are subject to both field-aligned (longitudinal) and transverse oscillatory motions, as evidenced by an increasing number of observations. Large-amplitude longitudinal motions provide valuable information on the geometry of the fila
Longitudinal oscillations of solar filament have been investigated via numerical simulations continuously, but mainly in one dimension (1D), where the magnetic field line is treated as a rigid flux tube. Whereas those one-dimensional simulations can
Small amplitude oscillations are a commonly observed feature in prominences/filaments. These oscillations appear to be of local nature, are associated to the fine structure of prominence plasmas, and simultaneous flows and counterflows are also prese
We follow the eruption of two related intermediate filaments observed in H$alpha$ (from GONG) and in EUV (from SDO/AIA) and the resulting large-amplitude longitudinal oscillations of the plasma in the filament channels. The events occurred in and aro
We investigate signatures of magnetic fields and activity at the surface and in the prominence system of the ultra-rapid rotator V530 Per, a G-type solar-like member of the young open cluster $alpha$~Persei. This object has a rotation period shorter