ﻻ يوجد ملخص باللغة العربية
Doping a topological insulator (TI) film with transition metal ions can break its time-reversal symmetry and lead to the realization of the quantum anomalous Hall (QAH) effect. Prior studies have shown that the longitudinal resistance of the QAH samples usually does not vanish when the Hall resistance shows a good quantization. This has been interpreted as a result of the presence of possible dissipative conducting channels in magnetic TI samples. By studying the temperature- and magnetic field-dependence of the magnetoresistance of a magnetic TI sandwich heterostructure device, we demonstrate that the predominant dissipation mechanism in thick QAH insulators can switch between non-chiral edge states and residual bulk states in different magnetic field regimes. The interactions between bulk states, chiral edge states, and non-chiral edge states are also investigated. Our study provides a way to distinguish between the dissipation arising from the residual bulk states and non-chiral edge states, which is crucial for achieving true dissipationless transport in QAH insulators and for providing deeper insights into QAH-related phenomena.
The quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has quantized Hall resistance of h/Ce2 and vanishing longitudinal resistance under zero magnetic field, where C is called the Chern number. The QAH effect h
The theoretical analysis of topological insulators (TIs) has been traditionally focused on infinite homogeneous crystals with band gap in the bulk and nontrivial topology of their wavefunctions, or infinite wires whose boundaries host surface or edge
Instability of quantum anomalous Hall (QAH) effect has been studied as function of electric current and temperature in ferromagnetic topological insulator thin films. We find that a characteristic current for the breakdown of the QAH effect is roughl
An intriguing observation on the quantum anomalous Hall effect (QAHE) in magnetic topological insulators (MTIs) is the dissipative edge states, where quantized Hall resistance is accompanied by nonzero longitudinal resistance. We numerically investig
We study the transport properties of a voltage-biased Josephson junction where the BCS superconducting leads are coupled via the edges of a quantum Hall sample. In this scenario, an out of equilibrium Josephson current develops, which is numerically