ﻻ يوجد ملخص باللغة العربية
An intriguing observation on the quantum anomalous Hall effect (QAHE) in magnetic topological insulators (MTIs) is the dissipative edge states, where quantized Hall resistance is accompanied by nonzero longitudinal resistance. We numerically investigate this dissipative behavior of QAHE in MTIs with a three-dimensional tight-binding model and non-equilibrium Greens function formalism. It is found that, in clean samples, the geometric mismatch between the detecting electrodes and the MTI sample leads to additional scattering in the central Hall bar, which is similar to the effect of splitting gates in the traditional Hall effect. As a result, while the Hall resistance remains quantized, the longitudinal resistance deviates from zero due to such additional scattering. It is also shown that external magnetic fields as well as disorder scattering can suppress the dissipation of the longitudinal resistance. These results are in good agreement with previous experimental observations and provide insight on the fabrication of QAHE devices.
The Hall effect, the anomalous Hall effect and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The quant
We report a proximity-driven large anomalous Hall effect in all-telluride heterostructures consisting of ferromagnetic insulator Cr2Ge2Te6 and topological insulator (Bi,Sb)2Te3. Despite small magnetization in the (Bi,Sb)2Te3 layer, the anomalous Hall
The quantum anomalous Hall (QAH) state is a two-dimensional bulk insulator with a non-zero Chern number in absence of external magnetic fields. Protected gapless chiral edge states enable dissipationless current transport in electronic devices. Dopin
As one of paradigmatic phenomena in condensed matter physics, the quantum anomalous Hall effect (QAHE) in stoichiometric Chern insulators has drawn great interest for years. By using model Hamiltonian analysis and first-principle calculations, we est
Instability of quantum anomalous Hall (QAH) effect has been studied as function of electric current and temperature in ferromagnetic topological insulator thin films. We find that a characteristic current for the breakdown of the QAH effect is roughl