ترغب بنشر مسار تعليمي؟ اضغط هنا

AMBERT: A Pre-trained Language Model with Multi-Grained Tokenization

82   0   0.0 ( 0 )
 نشر من قبل Xinsong Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Pre-trained language models such as BERT have exhibited remarkable performances in many tasks in natural language understanding (NLU). The tokens in the models are usually fine-grained in the sense that for languages like English they are words or sub-words and for languages like Chinese they are characters. In English, for example, there are multi-word expressions which form natural lexical units and thus the use of coarse-grained tokenization also appears to be reasonable. In fact, both fine-grained and coarse-grained tokenizations have advantages and disadvantages for learning of pre-trained language models. In this paper, we propose a novel pre-trained language model, referred to as AMBERT (A Multi-grained BERT), on the basis of both fine-grained and coarse-grained tokenizations. For English, AMBERT takes both the sequence of words (fine-grained tokens) and the sequence of phrases (coarse-grained tokens) as input after tokenization, employs one encoder for processing the sequence of words and the other encoder for processing the sequence of the phrases, utilizes shared parameters between the two encoders, and finally creates a sequence of contextualized representations of the words and a sequence of contextualized representations of the phrases. Experiments have been conducted on benchmark datasets for Chinese and English, including CLUE, GLUE, SQuAD and RACE. The results show that AMBERT can outperform BERT in all cases, particularly the improvements are significant for Chinese. We also develop a method to improve the efficiency of AMBERT in inference, which still performs better than BERT with the same computational cost as BERT.



قيم البحث

اقرأ أيضاً

Language model pre-training based on large corpora has achieved tremendous success in terms of constructing enriched contextual representations and has led to significant performance gains on a diverse range of Natural Language Understanding (NLU) ta sks. Despite the success, most current pre-trained language models, such as BERT, are trained based on single-grained tokenization, usually with fine-grained characters or sub-words, making it hard for them to learn the precise meaning of coarse-grained words and phrases. In this paper, we propose a simple yet effective pre-training method named LICHEE to efficiently incorporate multi-grained information of input text. Our method can be applied to various pre-trained language models and improve their representation capability. Extensive experiments conducted on CLUE and SuperGLUE demonstrate that our method achieves comprehensive improvements on a wide variety of NLU tasks in both Chinese and English with little extra inference cost incurred, and that our best ensemble model achieves the state-of-the-art performance on CLUE benchmark competition.
Recently, various neural models for multi-party conversation (MPC) have achieved impressive improvements on a variety of tasks such as addressee recognition, speaker identification and response prediction. However, these existing methods on MPC usual ly represent interlocutors and utterances individually and ignore the inherent complicated structure in MPC which may provide crucial interlocutor and utterance semantics and would enhance the conversation understanding process. To this end, we present MPC-BERT, a pre-trained model for MPC understanding that considers learning who says what to whom in a unified model with several elaborated self-supervised tasks. Particularly, these tasks can be generally categorized into (1) interlocutor structure modeling including reply-to utterance recognition, identical speaker searching and pointer consistency distinction, and (2) utterance semantics modeling including masked shared utterance restoration and shared node detection. We evaluate MPC-BERT on three downstream tasks including addressee recognition, speaker identification and response selection. Experimental results show that MPC-BERT outperforms previous methods by large margins and achieves new state-of-the-art performance on all three downstream tasks at two benchmarks.
Most pre-trained language models (PLMs) construct word representations at subword level with Byte-Pair Encoding (BPE) or its variations, by which OOV (out-of-vocab) words are almost avoidable. However, those methods split a word into subword units an d make the representation incomplete and fragile. In this paper, we propose a character-aware pre-trained language model named CharBERT improving on the previous methods (such as BERT, RoBERTa) to tackle these problems. We first construct the contextual word embedding for each token from the sequential character representations, then fuse the representations of characters and the subword representations by a novel heterogeneous interaction module. We also propose a new pre-training task named NLM (Noisy LM) for unsupervised character representation learning. We evaluate our method on question answering, sequence labeling, and text classification tasks, both on the original datasets and adversarial misspelling test sets. The experimental results show that our method can significantly improve the performance and robustness of PLMs simultaneously. Pretrained models, evaluation sets, and code are available at https://github.com/wtma/CharBERT
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its re search progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
Although n-gram language models (LMs) have been outperformed by the state-of-the-art neural LMs, they are still widely used in speech recognition due to its high efficiency in inference. In this paper, we demonstrate that n-gram LM can be improved by neural LMs through a text generation based data augmentation method. In contrast to previous approaches, we employ a large-scale general domain pre-training followed by in-domain fine-tuning strategy to construct deep Transformer based neural LMs. Large amount of in-domain text data is generated with the well trained deep Transformer to construct new n-gram LMs, which are then interpolated with baseline n-gram systems. Empirical studies on different speech recognition tasks show that the proposed approach can effectively improve recognition accuracy. In particular, our proposed approach brings significant relative word error rate reduction up to 6.0% for domains with limited in-domain data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا