ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving N-gram Language Models with Pre-trained Deep Transformer

344   0   0.0 ( 0 )
 نشر من قبل Yiren Wang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Although n-gram language models (LMs) have been outperformed by the state-of-the-art neural LMs, they are still widely used in speech recognition due to its high efficiency in inference. In this paper, we demonstrate that n-gram LM can be improved by neural LMs through a text generation based data augmentation method. In contrast to previous approaches, we employ a large-scale general domain pre-training followed by in-domain fine-tuning strategy to construct deep Transformer based neural LMs. Large amount of in-domain text data is generated with the well trained deep Transformer to construct new n-gram LMs, which are then interpolated with baseline n-gram systems. Empirical studies on different speech recognition tasks show that the proposed approach can effectively improve recognition accuracy. In particular, our proposed approach brings significant relative word error rate reduction up to 6.0% for domains with limited in-domain data.

قيم البحث

اقرأ أيضاً

118 - Boliang Zhang , Ajay Nagesh , 2020
Web-crawled data provides a good source of parallel corpora for training machine translation models. It is automatically obtained, but extremely noisy, and recent work shows that neural machine translation systems are more sensitive to noise than tra ditional statistical machine translation methods. In this paper, we propose a novel approach to filter out noisy sentence pairs from web-crawled corpora via pre-trained language models. We measure sentence parallelism by leveraging the multilingual capability of BERT and use the Generative Pre-training (GPT) language model as a domain filter to balance data domains. We evaluate the proposed method on the WMT 2018 Parallel Corpus Filtering shared task, and on our own web-crawled Japanese-Chinese parallel corpus. Our method significantly outperforms baselines and achieves a new state-of-the-art. In an unsupervised setting, our method achieves comparable performance to the top-1 supervised method. We also evaluate on a web-crawled Japanese-Chinese parallel corpus that we make publicly available.
Large scale Pre-trained Language Models have proven to be very powerful approach in various Natural language tasks. OpenAIs GPT-2 cite{radford2019language} is notable for its capability to generate fluent, well formulated, grammatically consistent te xt and for phrase completions. In this paper we leverage this generation capability of GPT-2 to generate paraphrases without any supervision from labelled data. We examine how the results compare with other supervised and unsupervised approaches and the effect of using paraphrases for data augmentation on downstream tasks such as classification. Our experiments show that paraphrases generated with our model are of good quality, are diverse and improves the downstream task performance when used for data augmentation.
Existing generative pre-trained language models (e.g., GPT) focus on modeling the language structure and semantics of general texts. However, those models do not consider the numerical properties of numbers and cannot perform robustly on numerical re asoning tasks (e.g., math word problems and measurement estimation). In this paper, we propose NumGPT, a generative pre-trained model that explicitly models the numerical properties of numbers in texts. Specifically, it leverages a prototype-based numeral embedding to encode the mantissa of the number and an individual embedding to encode the exponent of the number. A numeral-aware loss function is designed to integrate numerals into the pre-training objective of NumGPT. We conduct extensive experiments on four different datasets to evaluate the numeracy ability of NumGPT. The experiment results show that NumGPT outperforms baseline models (e.g., GPT and GPT with DICE) on a range of numerical reasoning tasks such as measurement estimation, number comparison, math word problems, and magnitude classification. Ablation studies are also conducted to evaluate the impact of pre-training and model hyperparameters on the performance.
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its re search progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
276 - Bohan Li , Hao Zhou , Junxian He 2020
Pre-trained contextual representations like BERT have achieved great success in natural language processing. However, the sentence embeddings from the pre-trained language models without fine-tuning have been found to poorly capture semantic meaning of sentences. In this paper, we argue that the semantic information in the BERT embeddings is not fully exploited. We first reveal the theoretical connection between the masked language model pre-training objective and the semantic similarity task theoretically, and then analyze the BERT sentence embeddings empirically. We find that BERT always induces a non-smooth anisotropic semantic space of sentences, which harms its performance of semantic similarity. To address this issue, we propose to transform the anisotropic sentence embedding distribution to a smooth and isotropic Gaussian distribution through normalizing flows that are learned with an unsupervised objective. Experimental results show that our proposed BERT-flow method obtains significant performance gains over the state-of-the-art sentence embeddings on a variety of semantic textual similarity tasks. The code is available at https://github.com/bohanli/BERT-flow.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا