ﻻ يوجد ملخص باللغة العربية
The dynamics of opinion formation in a society is a complex phenomenon where many variables play an important role. Recently, the influence of algorithms to filter which content is fed to social networks users has come under scrutiny. Supposedly, the algorithms promote marketing strategies, but can also facilitate the formation of filters bubbles in which a user is most likely exposed to opinions that conform to their own. In the two-state majority-vote model an individual adopts an opinion contrary to the majority of its neighbors with probability $q$, defined as the noise parameter. Here, we introduce a visibility parameter $V$ in the dynamics of the majority-vote model, which equals the probability of an individual ignoring the opinion of each one of its neighbors. For $V=0.5$ each individual will, on average, ignore the opinion of half of its neighboring nodes. We employ Monte Carlo simulations to calculate the critical noise parameter as a function of the visibility $q_c(V)$ and obtain the phase diagram of the model. We find that the critical noise is an increasing function of the visibility parameter, such that a lower value of $V$ favors dissensus. Via finite-size scaling analysis we obtain the critical exponents of the model, which are visibility-independent, and show that the model belongs to the Ising universality class. We compare our results to the case of a network submitted to a static site dilution, and find that the limited visibility model is a more subtle way of inducing opinion polarization in a social network.
We study a nonequilibrium model with up-down symmetry and a noise parameter $q$ known as majority-vote model of M.J. Oliveira 1992 with heterogeneous agents on square lattice. By Monte Carlo simulations and finite-size scaling relations the critical
We generalize the original majority-vote model by incorporating an inertia into the microscopic dynamics of the spin flipping, where the spin-flip probability of any individual depends not only on the states of its neighbors, but also on its own stat
The majority-vote model with noise is one of the simplest nonequilibrium statistical model that has been extensively studied in the context of complex networks. However, the relationship between the critical noise where the order-disorder phase trans
We consider two consensus formation models coupled to Barabasi-Albert networks, namely the Majority Vote model and Biswas-Chatterjee-Sen model. Recent works point to a non-universal behavior of the Majority Vote model, where the critical exponents ha
On ($3,12^2$), ($4,6,12$) and ($4,8^2$) Archimedean lattices, the critical properties of majority-vote model are considered and studied using the Glauber transition rate proposed by Kwak {it et all.} [Phys. Rev. E, {bf 75}, 061110 (2007)] rather than