ﻻ يوجد ملخص باللغة العربية
Many users implicitly assume that software can only be exploited after it is installed. However, recent supply-chain attacks demonstrate that application integrity must be ensured during installation itself. We introduce SIGL, a new tool for detecting malicious behavior during software installation. SIGL collects traces of system call activity, building a data provenance graph that it analyzes using a novel autoencoder architecture with a graph long short-term memory network (graph LSTM) for the encoder and a standard multilayer perceptron for the decoder. SIGL flags suspicious installations as well as the specific installation-time processes that are likely to be malicious. Using a test corpus of 625 malicious installers containing real-world malware, we demonstrate that SIGL has a detection accuracy of 96%, outperforming similar systems from industry and academia by up to 87% in precision and recall and 45% in accuracy. We also demonstrate that SIGL can pinpoint the processes most likely to have triggered malicious behavior, works on different audit platforms and operating systems, and is robust to training data contamination and adversarial attack. It can be used with application-specific models, even in the presence of new softwa
Androids security model severely limits the capabilities of anti-malware software. Unlike commodity anti-malware solutions on desktop systems, their Android counterparts run as sandboxed applications without root privileges and are limited by Android
With the increased complexity of modern computer attacks, there is a need for defenders not only to detect malicious activity as it happens, but also to predict the specific steps that will be taken by an adversary when performing an attack. However
The 5G network systems are evolving and have complex network infrastructures. There is a great deal of work in this area focused on meeting the stringent service requirements for the 5G networks. Within this context, security requirements play a crit
Intuitively, a backdoor attack against Deep Neural Networks (DNNs) is to inject hidden malicious behaviors into DNNs such that the backdoor model behaves legitimately for benign inputs, yet invokes a predefined malicious behavior when its input conta
The proliferation of digitization and complexity of connectivity in Cyber-Physical Systems (CPSs) calls for a mechanism that can evaluate the functionality and security of critical infrastructures. In this regard, Digital Twins (DTs) are revolutioniz