ترغب بنشر مسار تعليمي؟ اضغط هنا

Securing Cyber-Physical Systems Through Blockchain-Based Digital Twins and Threat Intelligence

95   0   0.0 ( 0 )
 نشر من قبل Sabah Suhail
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The proliferation of digitization and complexity of connectivity in Cyber-Physical Systems (CPSs) calls for a mechanism that can evaluate the functionality and security of critical infrastructures. In this regard, Digital Twins (DTs) are revolutionizing the CPSs. Driven by asset-centric data, DTs are virtual replicas of physical systems that mirror every facet of a product or process and can provide actionable insights through monitoring, optimization, and prediction. Furthermore, replication and simulation modes in DTs can prevent and detect security flaws in the CPS without obstructing the ongoing operations of the live system. However, such benefits of DTs are based on an assumption about data trust, integrity, and security. Data trustworthiness is considered to be more critical when it comes to the integration and interoperability of multiple components or sub-components among different DTs owned by multiple stakeholders to provide an aggregated view of the complex physical system. Moreover, analyzing the huge volume of data for creating actionable insights in real-time is another critical requirement that demands automation. This article focuses on securing CPSs by integrating Artificial Intelligence (AI) and blockchain for intelligent and trusted DTs. We envision an AI-aided blockchain-based DT framework that can ensure anomaly prevention and detection in addition to responding against novel attack vectors in parallel with the normal ongoing operations of the live systems. We discuss the applicability of the proposed framework for the automotive industry as a CPS use case. Finally, we identify challenges that impede the implementation of intelligence-driven architectures in CPS.



قيم البحث

اقرأ أيضاً

352 - Peng Gao , Fei Shao , Xiaoyuan Liu 2020
Log-based cyber threat hunting has emerged as an important solution to counter sophisticated attacks. However, existing approaches require non-trivial efforts of manual query construction and have overlooked the rich external threat knowledge provide d by open-source Cyber Threat Intelligence (OSCTI). To bridge the gap, we propose ThreatRaptor, a system that facilitates threat hunting in computer systems using OSCTI. Built upon system auditing frameworks, ThreatRaptor provides (1) an unsupervised, light-weight, and accurate NLP pipeline that extracts structured threat behaviors from unstructured OSCTI text, (2) a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities, (3) a query synthesis mechanism that automatically synthesizes a TBQL query for hunting, and (4) an efficient query execution engine to search the big audit logging data. Evaluations on a broad set of attack cases demonstrate the accuracy and efficiency of ThreatRaptor in practical threat hunting.
Industrial processes rely on sensory data for decision-making processes, risk assessment, and performance evaluation. Extracting actionable insights from the collected data calls for an infrastructure that can ensure the dissemination of trustworthy data. For the physical data to be trustworthy, it needs to be cross-validated through multiple sensor sources with overlapping fields of view. Cross-validated data can then be stored on the blockchain, to maintain its integrity and trustworthiness. Once trustworthy data is recorded on the blockchain, product lifecycle events can be fed into data-driven systems for process monitoring, diagnostics, and optimized control. In this regard, Digital Twins (DTs) can be leveraged to draw intelligent conclusions from data by identifying the faults and recommending precautionary measures ahead of critical events. Empowering DTs with blockchain in industrial use-cases targets key challenges of disparate data repositories, untrustworthy data dissemination, and the need for predictive maintenance. In this survey, while highlighting the key benefits of using blockchain-based DTs, we present a comprehensive review of the state-of-the-art research results for blockchain-based DTs. Based on the current research trends, we discuss a trustworthy blockchain-based DTs framework. We highlight the role of Artificial Intelligence (AI) in blockchain-based DTs. Furthermore, we discuss current and future research and deployment challenges of blockchain-supported DTs that require further investigation.
The salient features of blockchain, such as decentralisation and transparency, have allowed the development of Decentralised Trust and Reputation Management Systems (DTRMS), which mainly aim to quantitatively assess the trustworthiness of the network participants and help to protect the network from adversaries. In the literature, proposals of DTRMS have been applied to various Cyber-physical Systems (CPS) applications, including supply chains, smart cities and distributed energy trading. In this chapter, we outline the building blocks of a generic DTRMS and discuss how it can benefit from blockchain. To highlight the significance of DTRMS, we present the state-of-the-art of DTRMS in various field of CPS applications. In addition, we also outline challenges and future directions in developing DTRMS for CPS.
136 - Peng Gao , Fei Shao , Xiaoyuan Liu 2021
Log-based cyber threat hunting has emerged as an important solution to counter sophisticated cyber attacks. However, existing approaches require non-trivial efforts of manual query construction and have overlooked the rich external knowledge about th reat behaviors provided by open-source Cyber Threat Intelligence (OSCTI). To bridge the gap, we build ThreatRaptor, a system that facilitates cyber threat hunting in computer systems using OSCTI. Built upon mature system auditing frameworks, ThreatRaptor provides (1) an unsupervised, light-weight, and accurate NLP pipeline that extracts structured threat behaviors from unstructured OSCTI text, (2) a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities, (3) a query synthesis mechanism that automatically synthesizes a TBQL query from the extracted threat behaviors, and (4) an efficient query execution engine to search the big system audit logging data.
Cyber-physical systems (CPS) are interconnected architectures that employ analog, digital, and communication resources for their interaction with the physical environment. CPS are the backbone of enterprise, industrial, and critical infrastructure. T hus, their vital importance makes them prominent targets for malicious attacks aiming to disrupt their operations. Attacks targeting cyber-physical energy systems (CPES), given their mission-critical nature, can have disastrous consequences. The security of CPES can be enhanced leveraging testbed capabilities to replicate power system operations, discover vulnerabilities, develop security countermeasures, and evaluate grid operation under fault-induced or maliciously constructed scenarios. In this paper, we provide a comprehensive overview of the CPS security landscape with emphasis on CPES. Specifically, we demonstrate a threat modeling methodology to accurately represent the CPS elements, their interdependencies, as well as the possible attack entry points and system vulnerabilities. Leveraging the threat model formulation, we present a CPS framework designed to delineate the hardware, software, and modeling resources required to simulate the CPS and construct high-fidelity models which can be used to evaluate the systems performance under adverse scenarios. The system performance is assessed using scenario-specific metrics, while risk assessment enables system vulnerability prioritization factoring the impact on the system operation. The overarching framework for modeling, simulating, assessing, and mitigating attacks in a CPS is illustrated using four representative attack scenarios targeting CPES. The key objective of this paper is to demonstrate a step-by-step process that can be used to enact in-depth cybersecurity analyses, thus leading to more resilient and secure CPS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا