ﻻ يوجد ملخص باللغة العربية
We report crystal growth and Raman spectroscopy characterization of pure and mixed bulk topological insulators. The series comprises of both binary and ternary tetradymite topological insulators. We analyzed in detail the Raman peaks of vibrational modes as out of plane Ag, and in plane Eg for both binary and ternary tetradymite topological insulators. Both out of plane Ag exhibit obvious atomic size dependent peak shifts and the effect is much lesser for the former than the latter. The situation is rather interesting for in plane Eg, which not only shows the shift but rather a broader hump like structure. The de convolution of the same show two clear peaks, which are understood in terms of the presence of separate in plane BiSe and BiTe modes in mixed tetradymite topological insulators. Summarily, various Raman modes of well-characterized pure and mixed topological insulator single crystals are reported and discussed in this article.
The article comprises structural, microstructural, and physical properties analysis of Bi2Se3-xTex (x= 0, 1, 2 and 3) mixed topological insulator (MTI) single crystals. All the crystals were grown through a well-optimized solid-state reaction route v
We investigate the ultrafast transient absorption spectrum of Bi2Se3 topological insulator. Bi2Se3 single crystal is grown through conventional solid-state reaction routevia self-flux method. The structural properties have been studied in terms of hi
Orthorhombic Y$_{1-x}$Ca$_x$MnO$_3$ ($0 leq x leq 0.5$) was prepared under high pressure and the variations with $x$ of its structural, magnetic, electrical properties and the polarized Raman spectra were investigated. The lattice parameters change s
We present a study of the structural and electronic properties of highly doped topological insulator Bi2Se3 single crystals synthesized by the Bridgman method. Lattice structural characterizations by X-ray diffraction, scanning tunneling microscopy,
We present a magneto-infrared spectroscopic study of thin Bi2Se3 single crystal flakes. Magneto-infrared transmittance and reflectance measurements are performed in the Faraday geometry at 4.2K in a magnetic field up to 17.5T. Thin Bi2Se3 flakes (muc