ﻻ يوجد ملخص باللغة العربية
The article comprises structural, microstructural, and physical properties analysis of Bi2Se3-xTex (x= 0, 1, 2 and 3) mixed topological insulator (MTI) single crystals. All the crystals were grown through a well-optimized solid-state reaction route via the self-flux method. These MTI are well characterized through XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), EDAX (Energy Dispersive spectroscopy), and thereby, the physical properties are analyzed through the RT (Resistance vs temperature) down to 10K as well as the magneto-resistance (MR) measurements (at 5K) in a magnetic field of up to 10 Tesla. The MR drastically varies from x=0 to x=3 in MTI, from a huge 400 percent, it goes down to 20 percent and 5 percent and eventually back to 315 percent. This fascinated behaviour of MR is explained in this article through HLN (Hikami-Larkin-Nagaoka) equation and an additional term. This article not only proposed the mesmerizing behavior of MR in MTI but also explains the reason through competing WAL (Weak Anti-Localization) and WL (Weak Localization) conduction processes.
We report crystal growth and Raman spectroscopy characterization of pure and mixed bulk topological insulators. The series comprises of both binary and ternary tetradymite topological insulators. We analyzed in detail the Raman peaks of vibrational m
With a combined ab initio density functional and model Hamiltonian approach we establish that in the recently discovered multiferroic phase of the manganite Sr$_{1/2}$Ba$_{1/2}$MnO$_{3}$ the polar distortion of Mn and O ions is stabilized via enhance
Orthorhombic Y$_{1-x}$Ca$_x$MnO$_3$ ($0 leq x leq 0.5$) was prepared under high pressure and the variations with $x$ of its structural, magnetic, electrical properties and the polarized Raman spectra were investigated. The lattice parameters change s
We report a transport study of ultrathin Bi2Se3 topological insulators with thickness from one quintuple layer to six quintuple layers grown by molecular beam epitaxy. At low temperatures, the film resistance increases logarithmically with decreasing
We present a magneto-infrared spectroscopic study of thin Bi2Se3 single crystal flakes. Magneto-infrared transmittance and reflectance measurements are performed in the Faraday geometry at 4.2K in a magnetic field up to 17.5T. Thin Bi2Se3 flakes (muc