ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast Spectroscopy of Bi2Se3 Topological Insulator

176   0   0.0 ( 0 )
 نشر من قبل Veer Awana Dr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the ultrafast transient absorption spectrum of Bi2Se3 topological insulator. Bi2Se3 single crystal is grown through conventional solid-state reaction routevia self-flux method. The structural properties have been studied in terms of high-resolution Powder X-ray Diffraction (PXRD). Detailed Rietveld analysis of PXRD of the crystal showed that sample is crystallized in the rhombohedral crystal structure with a space group of R-3m, and the lattice parameters are a=b=4.14A and c=28.7010A. Scanning Electron Microscopy (SEM) result shows perfectly crystalline structure with layered type morphology which evidenced from surface XRD. Energy Dispersive Spectroscopy (EDS) analysis determined quantitative amounts of the constituent atoms, found to be very close to their stoichiometric ratio. Further the fluence dependent nonlinear behaviour is studied by means of ultrafast transient absorption spectroscopy. The ultrafast spectroscopy also predicts the capability of this single crystal to generate Terahertz (THz) radiations (T-rays).

قيم البحث

اقرأ أيضاً

We characterize the topological insulator Bi$_2$Se$_3$ using time- and angle- resolved photoemission spectroscopy. By employing two-photon photoemission, a complete picture of the unoccupied electronic structure from the Fermi level up to the vacuum level is obtained. We demonstrate that the unoccupied states host a second, Dirac surface state which can be resonantly excited by 1.5 eV photons. We then study the ultrafast relaxation processes following optical excitation. We find that they culminate in a persistent non-equilibrium population of the first Dirac surface state, which is maintained by a meta-stable population of the bulk conduction band. Finally, we perform a temperature-dependent study of the electron-phonon scattering processes in the conduction band, and find the unexpected result that their rates decrease with increasing sample temperature. We develop a model of phonon emission and absorption from a population of electrons, and show that this counter-intuitive trend is the natural consequence of fundamental electron-phonon scattering processes. This analysis serves as an important reminder that the decay rates extracted by time-resolved photoemission are not in general equal to single electron scattering rates, but include contributions from filling and emptying processes from a continuum of states.
We report crystal growth and Raman spectroscopy characterization of pure and mixed bulk topological insulators. The series comprises of both binary and ternary tetradymite topological insulators. We analyzed in detail the Raman peaks of vibrational m odes as out of plane Ag, and in plane Eg for both binary and ternary tetradymite topological insulators. Both out of plane Ag exhibit obvious atomic size dependent peak shifts and the effect is much lesser for the former than the latter. The situation is rather interesting for in plane Eg, which not only shows the shift but rather a broader hump like structure. The de convolution of the same show two clear peaks, which are understood in terms of the presence of separate in plane BiSe and BiTe modes in mixed tetradymite topological insulators. Summarily, various Raman modes of well-characterized pure and mixed topological insulator single crystals are reported and discussed in this article.
121 - W. Yu , X. Chen , Z. Jiang 2015
We present a magneto-infrared spectroscopic study of thin Bi2Se3 single crystal flakes. Magneto-infrared transmittance and reflectance measurements are performed in the Faraday geometry at 4.2K in a magnetic field up to 17.5T. Thin Bi2Se3 flakes (muc h less than 1{mu}m thick) are stabilized on the Scotch tape, and the reduced thickness enables us to obtain appreciable far-infrared transmission through the highly reflective Bi2Se3 single crystals. A pronounced electron-phonon coupling is manifested as a Fano resonance at the {alpha} optical phonon mode in Bi2Se3, resulting from the quantum interference between the optical phonon mode and the continuum of the electronic states. However, the Fano resonance exhibits no systematic line broadening, in contrast to the earlier observation of a similar Fano resonance in Bi2Se3 using magneto-infrared reflectance spectroscopy.
Combining high resolution scanning tunneling microscopy and first principle calculations, we identified the major native defects, in particular the Se vacancies and Se interstitial defects that are responsible for the bulk conduction and nanoscale po tential fluctuation in single crystals of archetypal topological insulator Bi2Se3. Here it is established that the defect concentrations in Bi2Se3 are far above the thermodynamic limit, and that the growth kinetics dominate the observed defect concentrations. Furthermore, through careful control of the synthesis, our tunneling spectroscopy suggests that our best samples are approaching the intrinsic limit with the Fermi level inside the band gap without introducing extrinsic dopants.
The surface band bending tunes considerably the surface band structures and transport properties in topological insulators. We present a direct measurement of the band bending on the Bi2Se3 by using the bulk sensitive angular-resolved hard x-ray phot ospectroscopy (HAXPES). We tracked the depth dependence of the energy shift of Bi and Se core states. We estimate that the band bending extends up to about 20 nm into the bulk with an amplitude of 0.23--0.26 eV, consistent with profiles previously deduced from the binding energies of surface states in this material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا