ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear suppression from coherent $J/psi$ photoproduction at the Large Hadron Collider

191   0   0.0 ( 0 )
 نشر من قبل Vadim Guzey
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the data on coherent $J/psi$ photoproduction in Pb-Pb ultraperipheral collisions (UPCs) obtained in Runs 1 and 2 at the Large Hadron Collider (LHC), we determined with a good accuracy the nuclear suppression factor of $S_{Pb}(x)$ in a wide range of the momentum fraction $x$, $10^{-5} leq x leq 0.04$. In the small-$x$ region $x < 10^{-3}$, our $chi^2$ fit favors a flat form of $S_{Pb}(x) approx 0.6$ with approximately a 5% accuracy for $x=6 times 10^{-4} - 10^{-3} $ and a 25% error at $x=10^{-4}$. At the same time, uncertainties of the fit do not exclude a slow decrease of $S_{Pb}(x)$ in the small-$x$ limit. At large $x$, $S_{Pb}(x)$ is constrained to better than 10% precision up to $x=0.04$ and is also consistent with the value of $S_{Pb}(x)$ at $langle x rangle =0.042$, which we extract from the Fermilab data on the $A$ dependence of the cross section of coherent $J/psi$ photoproduction on fixed nuclear targets. The resulting uncertainties on $S_{Pb}(x)$ are small, which indicates the potential of the LHC data on coherent charmonium photoproduction in Pb-Pb UPCs to provide additional constraints on small-$x$ nPDFs. We explicitly demonstrate this using as an example the EPPS16 and nCTEQ16 nuclear parton distribution functions, whose uncertainties decrease severalfold after the Bayesian reweighting of the discussed UPC data.



قيم البحث

اقرأ أيضاً

Using the general notion of cross section fluctuations in hadron--nucleus scattering at high energies, we derive an expression for the cross section of incoherent $J/psi$ photoproduction on heavy nuclei $dsigma_{gamma A to J/psi Y}/dt$, which include s both elastic $dsigma_{gamma p to J/psi p}/dt$ and proton-dissociation $dsigma_{gamma p to J/psi Y}/dt$ photoproduction on target nucleons. We find that with good accuracy, $dsigma_{gamma A to J/psi Y}/dt$ can be expressed as a product of the sum of the $dsigma_{gamma p to J/psi p}/dt$ and $dsigma_{gamma p to J/psi Y}/dt$ cross sections, which have been measured at HERA, and the common nuclear shadowing factor, which is calculated using the leading twist nuclear shadowing model. Our prediction for the cross section of incoherent $J/psi$ photoproduction in Pb-Pb UPCs at $sqrt{s_{NN}}=2.76$ TeV and $y=0$, $dsigma_{AA to J/psi AY}(y=0)/dy=0.59-1.24$ mb, agrees within significant theoretical uncertainties with the data of the ALICE collaboration.
Interpreting the J/psi suppression reported in nucleus--nucleus collisions at SPS and RHIC requires the quantitative understanding of cold nuclear matter effects, such as the inelastic rescattering of J/psi states in nuclei or the nuclear modificatio n of parton densities. With respect to our former Glauber analysis, we include in the present work the new PHENIX d--Au measurements, and analyze as well all existing data using the EPS08 nuclear parton densities recently released. The largest suppression reported in the new PHENIX analysis leads in turn to an increase of sigma from 3.5 +/- 0.3 mb to 5.4 +/- 2.5 mb using proton PDF. The stronger x-dependence of the G^{A}/G^p ratio in EPS08 as compared to e.g. EKS98 shifts the cross section towards larger values at fixed target energies (x_2 ~ 0.1) while decreasing somehow the value extracted at RHIC (x_2 ~10^{-2}).
We study inclusive $J/psi$ photoproduction at NLO at large $P_T$ at HERA and the EIC. Our computation includes NLO QCD leading-$P_T$ corrections, QED contributions via an off-shell photon as well as those from $J/psi$+charm channels. For the latter, we employ the variable-flavour-number scheme. Our results are found to agree with the latest HERA data by H1 and provide, for the first time, a reliable estimate of the EIC reach for such a measurement. Finally, we demonstrate the observability of $J/psi$+charm production and the sensitivy to probe the non-perturbative charm content of the proton at high $x$, also known as intrinsic charm, at the EIC.
72 - L. Massacrier 2019
The photoproduction of heavy vector mesons in the electromagnetic interactions of ultra-relativistic nuclei is sensitive to the gluon distribution in the nucleus and thus to cold nuclear matter effects like shadowing or parton saturation. Besides the well known observations of vector meson production in ultra-peripheral collisions, first observations of an excess over the expected hadronic J/$psi$ production at very low transverse momentum ($p_T < $~0.3 GeV/$c$) in peripheral and semi-central nucleus-nucleus collisions both at LHC and RHIC energies were interpreted as the first sign of coherent J/$psi$ photoproduction occurring in Pb-Pb collisions with nuclear overlap. The ALICE Collaboration published the J/$psi$ coherent photoproduction cross sections in peripheral and semi-central Pb-Pb collisions at $sqrt{s_{rm NN}}$ = 2.76~TeV and forward rapidity ($2.5<y<4.0$). Using the LHC Run-2 data, ALICE presents preliminary results in peripheral Pb-Pb collisions at $sqrt{s_{rm NN}}$ = 5.02 TeV at mid-rapidity ($|y|<0.9$) and forward rapidity. Thanks to the very good tracking resolution of the central barrel, the extraction of the $p_T$-differential cross section was also possible, strengthening the photoproduction origin of the observed J/$psi$ excess. The quantitative understanding of this low-$p_T$ excess poses significant theoretical challenges since the J/$psi$ photoproduction depends on the collision dynamics as well as on the photon-flux and the photonuclear cross section. In this proceeding, we present the latest ALICE measurements on J/$psi$ photoproduction cross section in peripheral Pb-Pb collisions, with emphasis on the new forward measurement in the dimuon decay channel at $sqrt{s_{rm NN}}$ = 5.02~TeV. These results will be discussed and compared to several model calculations of J/$psi$ photoproduction in Pb-Pb collisions with nuclear overlap.
Using QCD calculations of the cross section of inclusive dijet photoproduction in Pb-Pb ultraperipheral collisions in the LHC kinematics as pseudo-data, we study the effect of including these data using the Bayesian reweighting technique on nCTEQ15, nCTEQ15np, and EPPS16 nuclear parton distribution functions (nPDFs). We find that, depending on the assumed error of the pseudo-data, it leads to a significant reduction of the nPDF uncertainties at small values of the momentum fraction $x_A$. Taking the error to be 5%, the uncertainty of nCTEQ15 and nCTEQ15np nPDFs reduces approximately by a factor of two at $x_A=10^{-3}$. At the same time, the reweighting effect on EPPS16 nPDFs is much smaller due to the higher value of the tolerance and a more flexible parametrization form.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا