ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on nuclear parton distributions from dijet photoproduction at the LHC

259   0   0.0 ( 0 )
 نشر من قبل Vadim Guzey
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using QCD calculations of the cross section of inclusive dijet photoproduction in Pb-Pb ultraperipheral collisions in the LHC kinematics as pseudo-data, we study the effect of including these data using the Bayesian reweighting technique on nCTEQ15, nCTEQ15np, and EPPS16 nuclear parton distribution functions (nPDFs). We find that, depending on the assumed error of the pseudo-data, it leads to a significant reduction of the nPDF uncertainties at small values of the momentum fraction $x_A$. Taking the error to be 5%, the uncertainty of nCTEQ15 and nCTEQ15np nPDFs reduces approximately by a factor of two at $x_A=10^{-3}$. At the same time, the reweighting effect on EPPS16 nPDFs is much smaller due to the higher value of the tolerance and a more flexible parametrization form.

قيم البحث

اقرأ أيضاً

78 - V. Guzey , M. Klasen 2020
We present a first, detailed study of diffractive dijet photoproduction at the recently approved electron-ion collider (EIC) at BNL. Apart from establishing the kinematic reaches for various beam types, energies and kinematic cuts, we make precise pr edictions at next-to-leading order (NLO) of QCD in the most important kinematic variables. We show that the EIC will provide new and more precise information on the diffractive parton density functions (PDFs) in the pomeron than previously obtained at HERA, illuminate the still disputed mechanism of global vs. only resolved-photon factorization breaking, and provide access to a completely new quantity, i.e. nuclear diffractive PDFs.
190 - V. Guzey , E. Kryshen 2020
Using the data on coherent $J/psi$ photoproduction in Pb-Pb ultraperipheral collisions (UPCs) obtained in Runs 1 and 2 at the Large Hadron Collider (LHC), we determined with a good accuracy the nuclear suppression factor of $S_{Pb}(x)$ in a wide rang e of the momentum fraction $x$, $10^{-5} leq x leq 0.04$. In the small-$x$ region $x < 10^{-3}$, our $chi^2$ fit favors a flat form of $S_{Pb}(x) approx 0.6$ with approximately a 5% accuracy for $x=6 times 10^{-4} - 10^{-3} $ and a 25% error at $x=10^{-4}$. At the same time, uncertainties of the fit do not exclude a slow decrease of $S_{Pb}(x)$ in the small-$x$ limit. At large $x$, $S_{Pb}(x)$ is constrained to better than 10% precision up to $x=0.04$ and is also consistent with the value of $S_{Pb}(x)$ at $langle x rangle =0.042$, which we extract from the Fermilab data on the $A$ dependence of the cross section of coherent $J/psi$ photoproduction on fixed nuclear targets. The resulting uncertainties on $S_{Pb}(x)$ are small, which indicates the potential of the LHC data on coherent charmonium photoproduction in Pb-Pb UPCs to provide additional constraints on small-$x$ nPDFs. We explicitly demonstrate this using as an example the EPPS16 and nCTEQ16 nuclear parton distribution functions, whose uncertainties decrease severalfold after the Bayesian reweighting of the discussed UPC data.
125 - V. Guzey , M. Klasen 2019
We present a next-to-leading order QCD calculation of inclusive dijet photoproduction in ultraperipheral Pb-Pb collisions at the LHC and show that the results agree very well with various kinematic distributions measured by the ATLAS collaboration. T he effect of including these data in nCTEQ or EPPS16 nuclear parton density functions (nPDFs) is then studied using the Bayesian reweighting technique. For an assumed total error of 5% on the final data, its inclusion would lead to a significant reduction of the nPDF uncertainties of up to a factor of two at small values of the parton momentum fraction. As an outlook, we discuss future analyes of diffractive nPDFs, which are so far completely unknown.
We calculate the cross section of inclusive dijet photoproduction in ultraperipheral collisions (UPCs) of heavy ions at the CERN Large Hadron Collider using next-to-leading order perturbative QCD and demonstrate that it provides a good description of the ATLAS data. We study the role of this data in constraining nuclear parton distribution functions (nPDFs) using the Bayesian reweighting technique and find that it can reduce current uncertainties of nPDFs at small $x$ by a factor of 2. We also make predictions for diffractive dijet photoproduction in UPCs and examine its potential to shed light on the disputed mechanism of QCD factorization breaking in diffraction.
Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton dist ributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non- linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program at the LHC would provide a set of measurements allowing for unprecedented tests of the factorization assumption underlying global nPDF fits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا