ﻻ يوجد ملخص باللغة العربية
Interpreting the J/psi suppression reported in nucleus--nucleus collisions at SPS and RHIC requires the quantitative understanding of cold nuclear matter effects, such as the inelastic rescattering of J/psi states in nuclei or the nuclear modification of parton densities. With respect to our former Glauber analysis, we include in the present work the new PHENIX d--Au measurements, and analyze as well all existing data using the EPS08 nuclear parton densities recently released. The largest suppression reported in the new PHENIX analysis leads in turn to an increase of sigma from 3.5 +/- 0.3 mb to 5.4 +/- 2.5 mb using proton PDF. The stronger x-dependence of the G^{A}/G^p ratio in EPS08 as compared to e.g. EKS98 shifts the cross section towards larger values at fixed target energies (x_2 ~ 0.1) while decreasing somehow the value extracted at RHIC (x_2 ~10^{-2}).
We present $Phi$- and $J/Psi$--nuclear bound state energies and absorption widths for some selected nuclei, using potentials in the local density approximation computed from an effective Lagrangian approach combined with the quark-meson coupling mode
Using the data on coherent $J/psi$ photoproduction in Pb-Pb ultraperipheral collisions (UPCs) obtained in Runs 1 and 2 at the Large Hadron Collider (LHC), we determined with a good accuracy the nuclear suppression factor of $S_{Pb}(x)$ in a wide rang
We compute the $J/psi$ polarization observables $lambda_theta$, $lambda_phi$, $lambda_{thetaphi}$ in a Color Glass Condensate (CGC) + nonrelativistic QCQ (NRQCD) formalism that includes contributions from both color singlet and color octet intermedia
We argue that the s-channel cut contribution to J/psi hadroproduction can be significantly larger than the usual cut contribution of the color-singlet mechanism, which is known to underestimate the experimental measurements. A scenario accounting for
We study the medium-induced gluon emission process experienced by a hard jet parton propagating through the dense nuclear matter in the framework of deep inelastic scattering off a large nucleus. We work beyond the collinear rescattering expansion an