ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the impact of channel aging on the performance of cell-free (CF) massive multiple-input multiple-output (MIMO) systems with pilot contamination. To take into account the channel aging effect due to user mobility, we first compute a channel estimate. We use it to derive novel closed-form expressions for the uplink spectral efficiency (SE) of CF massive MIMO systems with large-scale fading decoding and matched-filter receiver cooperation. The performance of a small-cell system is derived for comparison. It is found that CF massive MIMO systems achieve higher 95%-likely uplink SE in both low- and high-mobility conditions, and CF massive MIMO is more robust to channel aging. Fractional power control (FPC) is considered to compensate to limit the inter-user interference. The results show that, compared with full power transmission, the benefits of FPC are gradually weakened as the channel aging grows stronger.
In this paper, we investigate the impact of channel aging on the performance of cell-free (CF) massive multiple-input multiple-output (MIMO) systems with both spatial correlation and pilot contamination. We derive novel closed-form uplink and downlin
We consider a single-cell massive MIMO system in which a base station (BS) with a large number of antennas transmits simultaneously to several single-antenna users in the presence of an attacker.The BS acquires the channel state information (CSI) bas
Pilot contamination, defined as the interference during the channel estimation process due to reusing the same pilot sequences in neighboring cells, can severely degrade the performance of massive multiple-input multiple-output systems. In this paper
In the context of cell-free massive multi-input multi-output (mMIMO), zero-forcing precoding (ZFP) requires the exchange of instantaneous channel state information and precoded data symbols via a fronthaul network. It causes considerable propagation
In this paper, we investigate the performance of cell-free massive MIMO systems with massive connectivity. With the generalized approximate message passing (GAMP) algorithm, we obtain the minimum mean-squared error (MMSE) estimate of the effective ch