ترغب بنشر مسار تعليمي؟ اضغط هنا

Photometric and spectroscopic evolution of the peculiar Type IIn SN 2012ab

89   0   0.0 ( 0 )
 نشر من قبل Anjasha Gangopadhyay
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an extensive ($sim$ 1200 d) photometric and spectroscopic monitoring of the Type IIn supernova (SN) 2012ab. After a rapid initial rise leading to a bright maximum (M$_{R}$ = $-$19.39 mag), the light curves show a plateau lasting about 2 months followed by a steep decline up to about 100 d. Only in the $U$ band the decline is constant in the same interval. At later phases, the light curves remain flatter than the $^{56}$Co decline suggesting the increasing contribution of the interaction between SN ejecta with circumstellar material (CSM). Although heavily contaminated by emission lines of the host galaxy, the early spectral sequence (until 32 d) shows persistent narrow emissions, indicative of slow unshocked CSM, and the emergence of broad Balmer lines of hydrogen with P-Cygni profiles over a blue continuum, arising from a fast expanding SN ejecta. From about 2 months to $sim$1200 d, the P-Cygni profiles are overcome by intermediate width emissions (FWHM $sim 6000$ kms), produced in the shocked region due to interaction. On the red wing a red bump appears after 76 d, likely a signature of the onset of interaction of the receding ejecta with the CSM. The presence of fast material both approaching and then receding is suggestive that we are observing the SN along the axis of a jet-like ejection in a cavity devoid of or uninterrupted by CSM in the innermost regions.



قيم البحث

اقرأ أيضاً

Optical, near-infrared (NIR) photometric and spectroscopic studies, along with the optical imaging polarimetric results for SN 2012au, are presented in this article to constrain the nature of the progenitor and other properties. Well-calibrated multi band optical photometric data (from $-$0.2 to +413 d since $B$-band maximum) were used to compute the bolometric light curve and to perform semi-analytical light-curve modelling using the $texttt{MINIM}$ code. A spin-down millisecond magnetar-powered model explains the observed photometric evolution of SN 2012au reasonably. Early-time imaging polarimetric follow-up observations ($-$2 to +31 d) and comparison with other similar cases indicate signatures of asphericity in the ejecta. Good spectral coverage of SN 2012au (from $-$5 to +391 d) allows us to trace the evolution of layers of SN ejecta in detail. SN 2012au exhibits higher line velocities in comparison with other SNe Ib. Late nebular phase spectra of SN 2012au indicate a Wolf$-$Rayet star as the possible progenitor for SN 2012au, with oxygen, He-core, and main-sequence masses of $sim$1.62 $pm$ 0.15 M$_odot$, $sim$4$-$8 M$_odot$, and $sim$17$-$25 M$_odot$, respectively. There is a clear absence of a first overtone of carbon monoxide (CO) features up to +319 d in the $K$-band region of the NIR spectra. Overall analysis suggests that SN 2012au is one of the most luminous slow-decaying Type Ib SNe, having comparatively higher ejecta mass ($sim$4.7$-$8.3 M$_odot$) and kinetic energy ($sim$[4.8 $-$ 5.4] $times$ 10$^{51}$ erg). Detailed modelling using $texttt{MESA}$ and the results obtained through $texttt{STELLA}$ and $texttt{SNEC}$ explosions also strongly support spin-down of a magnetar with mass of around 20 M$_odot$ and metallicity Z = 0.04 as a possible powering source of SN 2012au.
SN2011ht has been described both as a true supernova and as an impostor. In this paper, we conclude that it does not match some basic expectations for a core-collapse event. We discuss SN2011hts spectral evolution from a hot dense wind to a cool dens e wind, followed by the post-plateau appearance of a faster low density wind during a rapid decline in luminosity. We identify a slow dense wind expanding at only 500--600 km/s, present throughout the eruption. A faster wind speed V ~ 900 km/s may be identified with a second phase of the outburst. There is no direct or significant evidence for any flow speed above 1000 km/s; the broad asymmetric wings of Balmer emission lines in the hot wind phase were due to Thomson scattering, not bulk motion. We estimate a mass loss rate of order 0.04 Msun/yr during the hot dense wind phase of the event. There is no evidence that the kinetic energy substantially exceeded the luminous energy, roughly 2 X 10^49 ergs; so the total energy was far less than a true SN. We suggest that SN2011ht was a giant eruption driven by super-Eddington radiation pressure, perhaps beginning about 6 months before the discovery. A strongly non-spherical SN might also account for the data, at the cost of more free parameters.
The 2012 brightening of SN 2009ip was dominated by emission from the interaction of ejecta with the surrounding circumstellar material (CSM) produced by episodic mass loss from the progenitor, complicating the diagnosis of whether the underlying expl osion was a true supernova or a nonterminal eruption of a massive star. In this paper, we contribute a time series of optical photometric and spectroscopic observations for SN 2009ip from 1 to 3 years after the 2012 outburst, collected at the Las Cumbres Observatory and the Keck Observatory. We find that the brightness of SN 2009ip continues to decline with no deviations from a linear slope of $0.0030pm0.0005$ $rm mag day^{-1}$ in the $r^{prime}$ band, and demonstrate that this is similar to both observations and models of CSM-ejecta interaction. We show that the late-time spectra continue to be dominated by the signature features of CSM interaction, and that the large ratio of $L_{rm Halpha}/L_{rm Hbeta}approx40$ implies that the material remains optically thick to Balmer photons (Case C recombination). We combine our late-time photometry and spectra with early-time data for SN 2009ip and provide a comprehensive discussion that incorporates recently published models and observations for transient phenomena dominated by CSM-ejecta interaction, and conclude that the presence of broad H$alpha$ at early times remains among the best evidence that a terminal supernova has occurred. Finally, we compare our late-time spectra to those of Type IIn SNe and SN impostors at late phases and find that although SN 2009ip has some similarities with both types, it has more differences with late-time impostor spectra.
80 - Nikolai N. Chugai 2018
I explore signatures of a possible dust formation in the late SN~2010jl that could be imprinted in the line blueshift and the radius evolution of the dusty infrared-emitting shell. I propose a simple model that permits one to reproduce emission lines of blueshifted hydrogen and helium emission lines. The model suggests that the hydrogen emission originates primarily from shocked fragmented circumstellar clumps partially obscured by the absorbing cool dense shell and by unshocked ejecta. In the He I 1.083 $mu$m line on day 178 this component is significantly weaker compared to broad component from unshocked ejecta that is obscured by the absorprion produced by ejecta itself. Simulations of late time ($t > 400$ d) H$alpha$ suggest that, apart from the dust in the cool dense shell, a significant amount of dust must form in the unshocked supernova ejecta. The supernova radius predicted by the interaction model coincides with the radius of the dusty shell recovered from late time (> 460 days) infrared data, which strongly support that infrared radiation indeed originates from supernova. The ejecta dust is presumably locked in opaque blobs.
We present our photometric and spectroscopic observations on the peculiar transient AT2018cow. The multi-band photometry covers from peak to $sim$70 days and the spectroscopy ranges from 5 to $sim$50 days. The rapid rise ($t_{mathrm{r}}$$lesssim$2.9 days), high luminosity ($M_{V,mathrm{peak}}sim-$20.8 mag) and fast decline after peak make AT2018cow stand out of any other optical transients. While we find that its light curves show high resemblance to those of type Ibn supernovae. Moreover, the spectral energy distribution remains high temperature of $sim$14,000 K after $sim$15 days since discovery. The spectra are featureless in the first 10 days, while some broad emission lines due to H, He, C and O emerge later, with velocity declining from $sim$14,000 km s$^{-1}$ to $sim$3000 km s$^{-1}$ at the end of our observations. Narrow and weak He I emission lines emerge in the spectra at $t>$20 days since discovery. These emission lines are reminiscent of the features seen in interacting supernovae like type Ibn and IIn subclasses. We fit the bolometric light curves with a model of circumstellar interaction (CSI) and radioactive decay (RD) of Ni and find a good fit with ejecta mass $M_{mathrm{ej}}sim$3.16 M$_{odot}$, circumstellar material mass $M_{mathrm{CSM}}sim$0.04 M$_{odot}$, and ejected Ni mass $M_{^{56}mathrm{Ni}}sim$0.23 M$_{odot}$. The CSM shell might be formed in an eruptive mass ejection of the progenitor star. Furthermore, host environment of AT2018cow implies connection of AT2018cow with massive stars. Combining observational properties and the light curve fitting results, we conclude that AT2018cow might be a peculiar interacting supernova originated from a massive star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا