ترغب بنشر مسار تعليمي؟ اضغط هنا

The Homophily Principle in Social Network Analysis

202   0   0.0 ( 0 )
 نشر من قبل Kazi Zainab Khanam
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, social media has become a ubiquitous and integral part of social networking. One of the major attentions made by social researchers is the tendency of like-minded people to interact with one another in social groups, a concept which is known as Homophily. The study of homophily can provide eminent insights into the flow of information and behaviors within a society and this has been extremely useful in analyzing the formations of online communities. In this paper, we review and survey the effect of homophily in social networks and summarize the state of art methods that has been proposed in the past years to identify and measure the effect of homophily in multiple types of social networks and we conclude with a critical discussion of open challenges and directions for future research.



قيم البحث

اقرأ أيضاً

Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging wo rk in social neuroscience that leverages tools from network analysis has begun to pursue this issue, advancing knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individuals social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementation of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.
Android has become the most popular mobile operating system. Correspondingly, an increasing number of Android malware has been developed and spread to steal users private information. There exists one type of malware whose benign behaviors are develo ped to camouflage malicious behaviors. The malicious component occupies a small part of the entire code of the application (app for short), and the malicious part is strongly coupled with the benign part. In this case, the malware may cause false negatives when malware detectors extract features from the entire apps to conduct classification because the malicious features of these apps may be hidden among benign features. Moreover, some previous work aims to divide the entire app into several parts to discover the malicious part. However, the premise of these methods to commence app partition is that the connections between the normal part and the malicious part are weak. In this paper, we call this type of malware as Android covert malware and generate the first dataset of covert malware. To detect them, we first conduct static analysis to extract the call graphs. Through the deep analysis on graphs, we observe that although the correlations between the normal part and the malicious part in these graphs are high, the degree of these correlations has a distribution. Based on the observation, we design HomDroid to detect covert malware by analyzing the homophily of call graphs. We identify the ideal threshold of correlation to distinguish the normal part and the malicious part based on the evaluation results on a dataset of 4,840 benign apps and 3,385 covert malicious apps. According to our evaluation results, HomDroid is capable of detecting 96.8% of covert malware while the False Negative Rates of another four state-of-the-art systems (i.e., PerDroid, Drebin, MaMaDroid, and IntDroid) are 30.7%, 16.3%, 15.2%, and 10.4%, respectively.
The large-scale online management systems (e.g. Moodle), online web forums (e.g. Piazza), and online homework systems (e.g. WebAssign) have been widely used in the blended courses recently. Instructors can use these systems to deliver class content a nd materials. Students can communicate with the classmates, share the course materials, and discuss the course questions via the online forums. With the increased use of the online systems, a large amount of students interaction data has been collected. This data can be used to analyze students learning behaviors and predict students learning outcomes. In this work, we collected students interaction data in three different blended courses. We represented the data as directed graphs and investigated the correlation between the social graph properties and students final grades. Our results showed that in all these classes, students who asked more answers and received more feedbacks on the forum tend to obtain higher grades. The significance of this work is that we can use the results to encourage students to participate more in forums to learn the class materials better; we can also build a predictive model based on the social metrics to show us low performing students early in the semester.
81 - Yan Ge , Jun Ma , Li Zhang 2020
Higher-order proximity (HOP) is fundamental for most network embedding methods due to its significant effects on the quality of node embedding and performance on downstream network analysis tasks. Most existing HOP definitions are based on either hom ophily to place close and highly interconnected nodes tightly in embedding space or heterophily to place distant but structurally similar nodes together after embedding. In real-world networks, both can co-exist, and thus considering only one could limit the prediction performance and interpretability. However, there is no general and universal solution that takes both into consideration. In this paper, we propose such a simple yet powerful framework called homophily and heterophliy preserving network transformation (H2NT) to capture HOP that flexibly unifies homophily and heterophily. Specifically, H2NT utilises motif representations to transform a network into a new network with a hybrid assumption via micro-level and macro-level walk paths. H2NT can be used as an enhancer to be integrated with any existing network embedding methods without requiring any changes to latter methods. Because H2NT can sparsify networks with motif structures, it can also improve the computational efficiency of existing network embedding methods when integrated. We conduct experiments on node classification, structural role classification and motif prediction to show the superior prediction performance and computational efficiency over state-of-the-art methods. In particular, DeepWalk-based H2 NT achieves 24% improvement in terms of precision on motif prediction, while reducing 46% computational time compared to the original DeepWalk.
Differential privacy is effective in sharing information and preserving privacy with a strong guarantee. As social network analysis has been extensively adopted in many applications, it opens a new arena for the application of differential privacy. I n this article, we provide a comprehensive survey connecting the basic principles of differential privacy and applications in social network analysis. We present a concise review of the foundations of differential privacy and the major variants and discuss how differential privacy is applied to social network analysis, including privacy attacks in social networks, types of differential privacy in social network analysis, and a series of popular tasks, such as degree distribution analysis, subgraph counting and edge weights. We also discuss a series of challenges for future studies.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا